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IIEEJ Paper

2D-3D Registration Method for X-Ray Image Using 3D Reconstruction

Based on Deep Neural Network

Pragyan SHRESTHA†, Chun XIE†, Yuichi YOSHII††, Itaru KITAHARA†(Member)

†University of Tsukuba , ††Tokyo Medical University

<Summary> This paper proposes a method for registering X-ray images with its 3D CT model by

estimating 3D point clouds from X-ray images and their corresponding points on the image. Many con-

ventional methods generate a simulated X-ray image from a 3D CT model and optimize the pose by using

the similarity metrics between the simulated X-ray and the input X-ray image. On the other hand, deep

learning approaches that predict pose information need a canonical coordinate system defined manually on

the pre-operative CT to properly utilize the estimated pose. Therefore, we devise a fully automatic regis-

tration pipeline that is independent of coordinate system, by recovering 3D point clouds from X-ray images,

estimating the corresponding points on the images, and aligning them with the given 3D CT model.

Keywords: 2D-3D registration, 3D reconstruction, camera pose estimation, pn, icp, x-ray image

1. Introduction

Radiological imaging is one of the most important tech-

nologies in modern medical systems and diagnosis. Es-

pecially in Interventional Radiology (IVR), minimally in-

vasive surgery is performed using various imaging tech-

niques. In orthopedic surgeries such as osteosynthesis and

osteotomy, the projection of a 3D CT model is superim-

posed on the intraoperative X-ray image for checking the

surgical progress (i.e., if the pedicle screws are placed

according to the CT planning). The pre-operative CT,

which is acquired before surgery, is useful for planning

and simulation of fracture reduction, while intraoperative

X-ray images are used for guiding purposes such as intra-

operative implant positioning and bone cutting1). How-

ever, since X-ray images are transmissive in nature, depth

information is difficult to obtain. Therefore, the surgeon

must estimate the spatial location and shape of the tar-

get region mentally. Many studies have been conducted

to reduce the burden on the surgeon by superimposing a

preoperative CT image on the X-ray image in the appro-

priate posture. In general, methods for mapping a 3D CT

model to a 2D X-ray image can be classified according to

various criteria such as the target modality, the projection

parameters to be estimated, and the similarity function2)

. This research focuses on aligning with the pre-operative

CT model without manual interventions. Specifically, the

following issue could be solved.

Fig. 1 The key idea of the proposed method (bot-
tom) and issue with the recent deep learning ap-
proaches (top)

• The need to manually intervene the registration pro-

cess by finding landmarks and defining the canonical

coordinate system in preoperative CT.

An illustration of the problem is depicted in Fig.1

(top). With direct pose estimation based models, 1) the

pose vector is output directly conditioned on the X-ray

image. 2) the pose vector only captures the relation be-

tween the camera and the canonical coordinate system

(i.e., T c
l ). 3) Therefore, the pre-operative CT must be

transformed to the canonical coordinates for use in clini-

cal practice (i.e., T l
a). This requires some form of manual

intervention. With our proposed method (Fig.1 bottom),

this process is alleviated by 1) decomposing the pose into

2D-3D registration component (i.e., T c
l ) and 3D-3D regis-

tration component (i.e., T l
a) Through this, the physicians
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Fig. 2 The Architecture diagram and the whole pipeline of the proposed method. Com-
ponent (A) represents 2D-3D registration and Component (B) represents 3D-3D
registration

do not have to transform the CT model to a canonical

coordinate system, which usually involves finding land-

marks and calculating transforms such that certain land-

marks lie on the reference points in the canonical coor-

dinate system (e.g., anterior pelvic planes in the case of

pelvis)3).

The proposed method uses deep learning to reconstruct

the 3D model from the X-ray image, estimate the corre-

sponding points on the image, and then align the model

with the preoperative CT model. An overview diagram

is shown in Fig.2. 1) First, the 3D point cloud and

corresponding points on the image are estimated from

the input X-ray image. 2) In section A, the external pa-

rameters of the camera in the canonical coordinate sys-

tem are obtained using Random Sample and Consensus

(RANSAC)4)and Perspective-n-Point (PnP)5)algorithms.

3) in section B, the point cloud is extracted from the

target CT image and aligned with the estimated point

clouds using Iterative Closest Points (ICP)6). This yields

a rigid body transformation that maps the target model

in the anatomical coordinate system into the camera co-

ordinate system of the X-ray device. In the experiments,

a network that estimates the 3D point cloud and corre-

sponding points on the image, from the X-ray image, is

trained using the CT-ORG7)dataset. The pose obtained

using the point cloud and image correspondence points

estimated from the test data was evaluated in terms of

rotation and translation error. It is also compared with a

deep learning model PoseNet8), that directly regresses the

camera position and orientation. We choose PoseNet for

the direct pose estimation based baseline model because

of its simplicity and effectiveness.

2. Related Works

An early application of deep learning to the problem

of registering X-ray images with 3D CT models is the

CNN-based pose estimation developed by Miao et al9)

. They applied CNN to output parameters of camera

pose (6 degrees of freedom) in the final layer from X-

ray images. According to Sattler et al.10), such a pose

regression network can be considered as a form of image

retrieval. Moreover, It can fail if the object in the image is

different from the one used in training. Bier et al.11)used

CNN to detect anatomically meaningful landmarks in X-

ray images of the pelvis to map them to the 3D model.

This method provides higher registration accuracy and

can be performed in less time. However, it requires expert

annotation in 3D and 2D to train the network.

Furthermore, Liao et al.12)developed a network that

eliminates the need for anatomical landmarks by identi-

fying the projection points of randomly extracted points

from a 3D model across all images, given multi-view X-

ray images. Once the projection points are identified,

triangulation can be used to register all the multi-view

images with the 3D model. Given that this method is

tailored for multi-view images, its registration accuracy
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for a single image is comparatively low.

Jaganathan et al.13)devised a network that updates

poses sequentially. They constrain the correspondence

between the projected points on the boundary of the ob-

ject in the CT model and the points on the contour line

in the X-ray image using point-to-plane correspondence

(PPC) and conduct registration by sequentially updat-

ing the rigid transformation of the CT model. Most of

the methods described above need some form of man-

ual intervention for the registration to succeed if we are

given only the pre-operative CT and no other coordinate

information. The method proposed by Liao et al. can

be processed in full automation however it requires multi

view projection images for registration.

3. Method

3.1 Problem formulation

In general, the 2D-3D registration problem for finding

rigid body transformations is formulated as follows:

T̂ = argminD(Ireal, G ◦ T (VCT )) (1)

where T is the transformation matrix, VCT is the given

3D model, Ireal is the X-ray image, D is the similarity

metric, and G is the function that generates the simulated

image from the 3D model. In the proposed method, we

consider solving the problem expressed in Equation (1)

by transforming it into the following Equations (2), (3)

and (4).

T̂ a
l = argminD(T̂ a

l ◦ Ḡ(Ireal), VCT ) (2)

T̂ c
l = argminD(T̂ c

l ◦ Ḡ(Ireal), Ireal) (3)

T̂ = T̂ c
l ◦ T̂ a

l (4)

where Ḡ is the function that outputs the 3D point

cloud from the X-ray image, T̂ a
l is the transformation

from the anatomical coordinate system used in the CT

image to the canonical coordinate system defined in the

point cloud coordinates, while T̂ c
l is the transformation

from the anatomical coordinate system to the X-ray de-

vice coordinate system.

Equation (4) is the key idea in our proposed method.

The transformation matrices obtained in each section

(2D-3D and 3D-3D registration) are combined to pro-

duce the final transformation matrix that transforms the

anatomical coordinates into camera coordinates for fur-

ther overlay projections.

3.2 Network architecture

We propose a robust registration framework by decou-

pling 3D reconstruction and the camera pose estimation

which is then integrated with Equation (4) for final align-

ment. Equation (2) represents the ICP part and Equation

(3) represents the PnP + RANSAC part respectively in

Fig.2. The proposed method uses a convolutional neural

network and two MLP layers to regress the 3D point co-

ordinates in the canonical system and their corresponding

2D coordinates on the image from the input X-ray image

as shown in Fig.2. We use ResNet5014)as the backbone for

CNN. The output of the final convolutional layer is used

as input to the respective MLP branches. Chamfer Dis-

tance is used for the loss function of the point cloud, and

mean squared error is used for the corresponding points

on the image.

3.3 Registration pipeline

During inference, PnP + RANSAC is performed based

on the 2D corresponding points and the 3D point coor-

dinates to obtain a rigid body transformation from the

canonical coordinate system to the camera coordinate

system. Furthermore, a 3D point cloud from the target

CT is created by obtaining the gradient values, and sam-

pling points by thresholding gradient magnitude. Since

the estimated point cloud is defined in the canonical coor-

dinate system, the point cloud of the target CT is trans-

formed to the canonical coordinate system using ICP or

manually. Finally, the point cloud of the target CT con-

verted to the canonical coordinate system is projected

using the camera pose obtained by PnP + RANSAC,

overlapping with the X-ray image to achieve registration.

4. Experimental Results

4.1 Dataset

Experiments were conducted to evaluate the camera

pose estimation pipeline of the proposed method. Sim-

ulated images were generated from CT data using the

camera pose with added Gaussian noise for training and

testing. CT-ORG7)was used as the CT dataset for gener-

ating the simulated images. Five CT data were selected

in CT-ORG that contained the pelvis. The pelvis region

was extracted using a bone region segmentation mask.

To generate the simulated images from this volume data,

the following X-ray transformation equation was used.

IDRR =

∫
L

VCT dr (5)

where L is the ray from the X-ray source to the pixel on
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Table 1 Quantitative result of registering 2D X-ray im-
ages with 3D point clouds

Dataset Method Rot. [deg] Trans. [mm] X [mm] Y [mm] Z [mm] Runtime [s]
mean std mean std mean std mean std mean std mean std

VOL-A
Ours 4.99 7.07 72.70 85.24 13.47 8.20 14.31 9.94 32.28 13.46 0.0078 0.0004

PoseNet 8.91 13.63 93.42 116.42 22.86 32.50 19.35 37.05 28.24 49.11 0.0062 0.0002

VOL-B
Ours 14.29 18.12 226.04 245.46 11.82 7.49 10.32 5.05 100.60 113.78 0.0083 0.0006

PoseNet 19.78 22.16 203.89 178.93 36.58 63.74 23.95 49.89 70.21 103.83 0.0063 0.0002

Algorithm 1 Generating camera poses

1: p ∼ N (0, σ)
2: z ← xcenter

∥xcenter∥ + p

3: y ← (0, 0, 1)T + p
4: x← y × z
5: R← (x, y, z)T

the detector plane.

Furthermore, the pose for generating the image was set

so that the X-ray source was placed in a cylindrical shape

and the viewpoint was oriented to the center of the vol-

ume, considering the geometry of the C-arm. Specifically,

the procedures in Algorithm 1 were used to calculate

the camera pose for simulation. For the training data,

the Gaussian noise vector was obtained by sampling each

coordinate from a Gaussian distribution with a mean of

0.0 mm and a standard deviation of 1.0 mm.

We prepared two kinds of test data. One test set con-

tains 1000 images generated from one of the CT volumes

used in the training but were held out from the training

dataset (i.e., we refer to this as VOL-A). This represents

same volume different views. Another test set contains

1,000 images generated from a CT volume that was not

used during training (i.e., we refer to this as VOL-B). For

each test data, the camera poses were generated follow-

ing Algorithm 1. However, the noise vector was sampled

from a gaussian distribution with a mean of 0.0 mm and a

standard deviation of 10.0 mm, which is larger than that

of the training data. Figure 3 shows the visualization

of the generated camera poses in the left and the sample

images of simulated X-ray images.

The training data consists of 3,000 X-ray images per

volume, GT point clouds, and corresponding points on

the images. In this experiment, CT data from five pa-

tients were used, making it 15,000 samples in total. The

total number of samples in the test dataset was 1,000.

The same training and testing dataset were used for the

direct regression model of camera pose (hereafter referred

to as the comparison model).

Fig. 3 Visualization of camera positions and orienta-
tions for simulation (left) and example of gen-
erate X-ray images

4.2 Implementation details

The network depicted in Fig.2 was implemented us-

ing PyTorch15). OpenCV16)was used to apply PnP +

RANSAC, and Open3D17)was used for generating train-

ing point clouds from CT data. The model of the pro-

posed method was trained for about 6 hours using RTX

3090.

4.3 2D-3D registration

We evaluate the 2D-3D registration pipeline, which is

denoted by (A) in Fig.2 by considering two different sce-

narios. The rigid transformation obtained in this step

refers to T c
l in Equation (4). VOL-A refers to the dataset

containing X-ray images that were generated from the

same CT data as used in training albeit in different view-

points. VOL-B refers to the dataset containing X-ray

images generated from a completely different CT data.

Table 1 shows the registration results evaluated in

terms of rotation errors and translation error of the pre-

dicted transformation with the ground truth transforma-

tion matrices for these two different datasets with the

proposed method (Ours VOL-A, Ours VOL-B) and com-

parison method (PoseNet VOL-A, PoseNet VOL-B).

Figure 4 shows the reconstructed point clouds and the

box plot for rotation and translation errors. For VOL-A,

the proposed method had rotation error of 4.99 +/- 7.07

deg and translation error of 72.70 +/- 85.24 mm. While

for VOL-B, the proposed method had rotation error of

14.29 +/- 18.12 deg and translation error of 226.04 +/-
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Fig. 4 Reconstructed point clouds (yellow) and ground truth (red) on the left and results
for 2D-3D registration pipeline on the right

Fig. 5 Distribution of Translation Error with respect to chamfer distance of estimated
point cloud with GT and L2 error of estimated image points with GT

Fig. 6 Registration result with small error (Left) and large error (Right)

245.46 mm. This decrease in accuracy for data completely

unseen during training is expected due to small number

of CT scans used for training. The rotation error was

lower in both VOL-A and VOL-B when compared with

PoseNet while translation error for VOL-B was higher

in the proposed method. This is due to the larger error

in z-axis (depth direction) that exists in the proposed

method. Since the proposed method uses perspective-n-

point algorithm for pose estimation, small error in image

points can lead to larger error in depth direction.
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Fig. 7 Qualitative results of 3D-3D registration along with reprojection of target
point clouds with and without the alignment

We have also evaluated the estimated point clouds and

image point using chamfer distance and L2 error each.

The impact of these errors on translation component is

shown in Fig.5. VOL-B shows a tendency of increasing

translation error with increasing point cloud error. In-

terestingly, VOL-A does not show such tendency. We

speculate this to be caused by the effect of RANSAC on

finding good correspondences on VOL-A while failing on

VOL-B. An example of small registration error and large

registration error each is shown in Fig.6. For each case,

the input image is on the top left, reprojection of 3D

point cloud on the bottom left, and the estimated (blue)

/ ground truth (right) camera pose on the right.

4.4 3D-3D registration

We evaluate the 3D-3D registration pipeline, which is

denoted by (B) in Fig.2 by adding random offsets to the

ground truth target point clouds. The reason for only al-

lowing translation offsets is that generally CT scans con-

tain forward-backward, left-right information while the

origin of the anatomical coordinate system varies. The

random offset vector was sampled from uniform distri-

bution centered around zero with standard deviation of

100 mm. Furthermore, the X-ray image used in this ex-

periment is from VOL-A because the 2D-3D registration

results from VOL-B are not accurate enough for combin-

ing transformation matrices to get the reasonable final

pose.

In Fig.7, the yellow point cloud is the estimated point

cloud given by the network, and the blue point cloud is

the target (i.e., point cloud obtained from pre-operative

CT scan which is defined in anatomical coordinate sys-

tem). In the same figure, the top row and the bottom

row shows two different scenarios where the origin of the

target point cloud varies. Using Point-to-point ICP al-

gorithm, the rigid transformation for transforming target

point cloud to the predicted point cloud (i.e., T l
a in Equa-

tion (4) is computed. Using Equation (4), we can obtain

the final transformation matrix that transforms the tar-

get point cloud the camera coordinate system which can

then be reprojected into the image. In the right most

image of each row, the reprojected points of target point

cloud without alignment (i.e., using only T c
l ) is shown in

blue. While the reprojected points of the target point

cloud after alignment (i.e., using T̂ ) is shown in red. It is

evident that the latter case results in better registration

because of the inherent mismatched pose in the target

point cloud without alignment.

5. Discussions and Conclusion

In this research, a deep learning-based method for fully

automatic registration of 2D X-ray images with 3D CT
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Fig. 8 Example of predicted point clouds (yellow) and ground truth point clouds (red)
for VOL-B dataset on the left, predicted image points (blue) and ground truth
image point (red) on the right

models was proposed. The pipeline focused on solving

the issue of manually defining coordinate system on the

pre-operative CT scan by decomposing the registration

problem into 2D-3D registration and 3D-3D registration.

Experimental results verified the accuracy of 2D-3D

registration quantitatively and it was found to have better

rotation accuracy, but lower translation accuracy com-

pared to that of direct pose estimation method. The

resulting accuracy is not sufficient for clinical use how-

ever, while only qualitative results were shown for 3D-3D

registration pipeline, it shows promising results for alle-

viating the manual intervention needed in practice. Fur-

thermore, the runtime is under 10ms in both methods,

enabling real-time usage.

Since we trained our model using only 5 CT variations,

it was difficult for the model to generalize to previously

unseen CT. This can be observed from the image point

prediction results shown in Fig.8. The reconstructed

point cloud originates slightly differently compared to

the ground truth, yet its overall shape remains consis-

tent. On the other hand, the predicted image points were

cluttered around the center region shown in white box.

This happens due to the network not generalizing to this

shape and view of the CT data. Future works can address

this problem by simply training the model on large num-

ber of datasets. To improve the core 2D-3D registration

accuracy, one approach would be to re-place the simple

multi-layer perceptrons with PointNet18)like architecture

specifically designed for point clouds.
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Jewelry Image-to-Image Translation with Consistency Regularization and

Data Augmentations
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<Summary> Image enhancement of jewelry is a difficult task because of the shape of the jewelry, its color,

background elements such as shadows and glass stands, as well as the blurring of the boundary between the

jewelry and the background and unique light reflections. Our preliminary results indicate that CycleGAN is

effective in correcting jewelry images and that background elements in jewelry images adversely affect jewelry

image correction. In this study, we propose a method to correct jewelry images with strong background

elements. The results show that the target consistency of TC-ShadowGAN is effective not only in removing

the background but also correcting the jewelry area in the image. In addition, data augmentation with

Balanced Consistency Regularization (BCR) and Dense Consistency Regularization (DCR) are applied to

increase the accuracy of the correction of the jewelry area.

Keywords: jewelry image, image-to-image translation, generative adversarial networks, target consistency,

balanced consistency regularization, dense consistency regularization

1. Introduction

Jewelry is a product whose value is linked to its visual

appearance. Therefore, jewelry retailers use photo re-

touching software to manually process images of jewelry

to eliminate the difference between the actual appearance

of the jewelry and the image captured by a camera for on-

line transactions. A single jewelry image takes an expert

20 minutes to an hour. There is a need to automate image

correction through machine learning.

We propose an image-to-image translation method that

corrects a captured jewelry image (Domain X) to an ex-

pertly retouched image (Domain Y , Ground Truth). Ap-

plying image-to-image translation techniques to jewelry

images is challenging due to the shape of the jewelry,

its color, and background elements, such as the shadows

and glass stands, blurring of the boundary between the

jewelry and background, and the unique light reflections.

Because of these unique characteristics of jewelry images,

algorithms that work well on other large datasets may not

work well on jewelry images. In addition, compared to

landscape and animal image transformations, jewelry im-

age transformations must be precise enough to withstand

online sales. The goal is to propose a generic end-to-end

image translation method, rather than a jewelry-specific

model, for the challenging subject of jewelry images.

As an image-to-image translation model for jewelry

images, we use TC-ShadowGAN1), which was originally

proposed for shadow removal. The performance of the

GAN models depends on the quality of discriminators,

which distinguish real images from translated fake ones.

Therefore we apply balanced consistency regularization

(BCR)2)to improve the removal of background elements.

We also apply dense consistency regularization (DCR)3)

to increase the accuracy of the correction of the jewelry

area and to clarify the boundary between the jewelry and

the background. We show that introducing a combina-

tion of BCR and DCR in TC-ShadowGAN improves the

correction of jewelry images.

2. Related Research

There are a lot of studies on deep learning-based image-

to-image translation. Especially, unpaired models, which

do not need paired data, have been proposed.

In the field of low-light enhancement, the Retinex the-

ory, which decomposes an image into reflectance and illu-

mination, has been widely adopted. RUAS4)and ISSR5)

are models inspired by the Retinex theory. ISSR com-

bines image segmentation with the Retinex model to im-

prove transformation performance. EnlightenGAN6)uses

an attention-guided U-Net as the generator, and two dis-

criminators (global and local) to suppress overexposure

68

IIEEJ Transactions on Image Electronics and Visual Computing Vol.12 No.2 （2024）



Fig. 1 Comparison of image-to-image translation mod-

els applied to jewelry image correction10)

and underexposure. Zero-DCE7)is a model to estimate

pixel-wise and higher-order curves for dynamic range ad-

justment of a given image and does not need any paired

or unpaired data during training.

CycleGAN8)is a pioneering study in general-purpose

image domain transformation that does not require any

paired data by imposing cycle consistency. CUT9)is also a

general-purpose model, which is based on the contrastive

learning in the field of self-supervised learning.

Shizuno et al.10)showed that state-of-the art algorithms

on large datasets, such as EnlightenGAN6), ISSR5), Zero-

DCE7), RUAS4)and CUT9), do not always perform well on

jewelry images due to their unique features. CycleGAN8)

outperformed other state-of-the art algorithms as shown

in Fig. 1. CycleGAN8)is a type of GAN that achieves a

style transformation from domain X to domain Y . The

generator G learns a style transformation from domain X

to domain Y , and the generator F learns a transformation

from domain Y to domainX. CycleGAN introduces cycle

consistency loss,

Lcyc(G,F )=Ex∼X [||F (G(x))− x||1]

+Ey∼Y [||G(F (y))− y||1] (1)

which ensures that the bi-directional transformations be-

tween domain X and domain Y are consistent.

Nakagawa et al.11)applied CycleGAN8)to jewelry im-

ages with and without background elements and com-

pared the correction results. The results showed that

background elements in jewelry images have a negative

impact on image correction by CycleGAN. In the case

of images with large background elements such as glass

stands, excessive brightness enhancement and noise were

observed in the jewelry area when training was performed

with the background elements left in place as shown in

Fig. 2 Problems in CycleGAN11)

Fig. 2. In images where the boundary between the back-

ground and the jewelry is blurred, a halation is generated

in a part of the jewelry image.

On the other hand, CycleGAN does not progress well

when training on jewelry images with the background re-

moved, because they are quite similar to the ground truth

images11). This problem was partially solved by introduc-

ing the Two Time Update Rule (TTUR)12). In practical

applications, however, removing the background from a

jewelry image as a preprocessing step is impractical from

a cost perspective. In this paper, we focus on the jewelry

images with background elements.

CycleGAN learns the inverse transformation from the

ground truth to the captured image without additional

information such as lighting conditions. As shown in

Fig. 3, variously generated backgrounds are added to the

jewelry image during the learning process. We speculate

that the randomly generated background acts as a data

augmentation, which indirectly improves the performance

of CycleGAN’s discriminator and thus the generator’s

ability to correct for the jewelry area in the image. At

the same time, however, fake captured images obtained

through training without lighting conditions may deviate

from the actual captured image, which may negatively

affect training of generator.

Based on these hypotheses, we expect that it is effec-

tive to increase the performance of the discriminator in

the image-to-image translation model by data augmenta-

tion. Therefore, we propose a method to improve the per-

formance of the discriminator by data augmentation and

consistency regularizations in a uni-directional image-to-

image translation model, which avoids the cycle consis-

tency.

3. Proposed Method

Various methods have been proposed to improve the

performance of GAN-type models: (1) balancing the

learning of the generator and discriminator11),12)(2) try-

ing various GAN models10)(3) hyperparameter tuning (4)
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Fig. 3 The generated image F (y) from the ground truth
image y and the generated image G(F (y)) by the
generator G in the learning process of CycleGAN

changing the model structure (5) data augmentation for

GAN models2)(6) application of self-supervised method

to improve the performance of the discriminator. Our

proposed method is based on TC-ShadowGAN and in-

troduces BCR for data augmentation and DCR to boost

the quality of discriminators (Fig. 4).

TC-ShadowGAN1)consists of a pair of networks, each

having an encoder-decoder type generator and a discrim-

inator. Two independent generators produce the residual

images G1(x) and G2(x), which are added pixel by pixel

to the original image x to produce two translated images.

TC-ShadowGAN introduces a target consistency,

LTC(G1, G2) = Ex [||(x+G1(x))− (x+G2(x))||1] (2)

and learns only the transformation from a shadowed im-

age to a shadow-less image, avoiding learning the bi-

directional transformations with cycle consistency loss in

CycleGAN8). TC-ShadowGAN uses the identity loss,

LIdentity(Gi) = Ey[||(y +Gi(y))− y||1] (i = 1, 2) (3)

which guarantees that the two generators G1 and G2 per-

form the identity transformation for real shadow-less im-

ages. The identity loss is commonly used in the image-

to-image translation models and makes the convergence

for training faster.

The discriminator discriminates between real and gen-

erated images. The generator G and discriminator D are

simultaneously trained using adversarial loss,

min
G

max
D

Ladv(D,G)

= EPY
[logD(xreal)]+EPX

[log(1−D(xfake))] (4)

where xreal is a real image drawn from the distribution

PY of images in domain Y , and xfake is the translated fake

image of the original image drawn from the distribution

PX in domain X.

Balanced Consistency Regularization (BCR)2)is a reg-

ularization method that makes data augmentation more

effective in learning GANs. BCR performs data augmen-

tations both on the real image xreal and the translated

fake image xfake to make the output consistent,

LBCR=||D(xreal)−D(t1(xreal))||2

+||D(xfake)−D(t2(xfake))||2, (5)

where t1 and t2 are image transformations.

Dense Consistency Regularization (DCR)3)is a regular-

ization method based on the idea of self-supervised learn-

ing to improve style transformations using GANs. DCR

first crops two patches x1 and x2 from a single real im-

age. Next, each patch image is passed through an encoder

part D0 of the discriminator (CNN1, CNN2 in Fig. 4) to

obtain the feature maps, D0(x1), D0(x2). One feature

map D0(x1) is then passed through the DCR module,

which consists of two 1x1 convolution layers and a leaky

ReLU layer. The stop gradient operation is applied to

the other feature map. The DCR module and the stop

gradient operation are applied to prevent feature collapse

to the trivial solution in representation learning. Finally,

the two feature maps, fDCR(D0(x1)) and D0(x2), in the

overlapping area Ω of two patches, x1, x2, are compared

by the negative cosine similarity, which enforces point-

wise consistency called Dense Consistency Regularization

loss3),

LDCR=
1

2
sim (fDCR(D0(x1)), D0(x2),Ω)

+
1

2
sim (fDCR(D0(x2)), D0(x1),Ω) , (6)

where sim(fDCR(D0(x), D0(x
′),Ω) is the negative cosine

similarity between two feature maps in the overlapping

area Ω. The DCR enables the discriminator to focus on

important area instead of the background.

The loss for the generator is

L(G1, G2) = Ladv + λ1LTC + λ2LIdentity, (7)

which is the same as the original TC-ShadowGAN. λ1

and λ2 are set to 40 and 5 for each, as in the original

TC-ShadowGAN1). The total loss of the discriminator in

our proposed model is

Ltotal = Ladv + λBCRLBCR + λDCRLDCR (8)

where λBCR and λDCR are weights for regularization

terms. λBCR = 10 is experimentally found to be opti-

mal when only BCR is introduced2).
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Fig. 4 Network structure: (a) Original TC-ShadowGAN (b) Proposed method

Fig. 5 Test images with strong backgrounds

4. Experiments

4.1 Dataset and method

The training dataset used in this study consists of 2,000

photographed images of jewelry and 2,000 ground truth

images which were corrected by an experienced photog-

rapher using image editing software. The test dataset

includes 63 images with various types of background ele-

ments, such as strong shadows, plastic plates, glass stands

and paper plates in Fig. 5. It includes images of intri-

cately shaped jewelry that is difficult to distinguish from

the background. In all the following experiments, the

learning rate is set to 0.002, the batch size to 1, and the

number of epochs to 200. The input image size is 256

× 256 pixels. When introducing BCR, random crop and

flip are imposed as data augmentations with λBCR = 10.

When introducing DCR, the patch size should be at least

0.7 times larger than the original image size and resized to

128 x 128 pixels. Color distortion, which changes bright-

ness, saturation, hue, and contrast with a probability of

80% and grayscale with a probability of 20%, is applied

to patches randomly. The fixed threshold τ that deter-

mines the overlapping area Ω in the patches is set to 0.5.

When DCR and BCR are simultaneously introduced, we

set the weights of losses with λBCR = 5 and λDCR = 0.1.

Other parameter settings are devoted to ablation studies

in Section 4.3

We use four metrics to measure the similarities between

translated images and ground truth images: Peak Signal-

to-Noise Ratio (PSNR) , Structural Similarity Index Mea-

sure (SSIM)13), average of the color difference per pixel in

LAB color space (LAB), and Fréchet Inception Distance

(FID)12). In addition, in order to focus on the correc-

tion of the foreground jewelry part, background removal

is performed on the corrected image to obtain an evalua-

tion index.

4.2 Main results

Figure 6 shows the results of our proposed method,

where we use TC-ShadowGAN as a base model and reg-

ularization methods of BCR and DCR are combined. We

can observe that our method can remove the background

more exquisitely. For example, in the ribbon pendant

head, the foreground and background borders are cor-

rectly separated. In the ruby earrings, it can be seen

that the two are separated only by the proposed method.

In the case of the pearl earrings, CycleGAN fails to sep-

arate the background from the foreground, resulting in

whitening of the pearls, but the proposed method allevi-

ates this problem. It also improves the removal rate of

black area in the corners.

Table 1 presents a quantitative evaluation using

PSNR, SSIM, LAB, and FID. In the TC-ShadowGAN-

based models, there are two values obtained from two

generators for each metric. However, these values are

nearly identical because of target consistency. Our pro-

posed method shows consistent improvements. Note that

the background is removed before obtaining the metrics
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Fig. 6 Comparison of translated images

and the focus is only on the jewelry area. Compared

to CycleGAN, TC-ShadowGAN with the introduction of

BCR improves performance on all evaluation metrics. In

addition, when DCR is introduced alone, the performance

improvement is marginal compared to when DCR is not

introduced, but when BCR and DCR are applied simul-

taneously, the performance improves.

In this experiment, we showed that the introduction of

a combination of BCR and DCR into TC-ShadowGAN

can remove background elements in jewelry images more

powerfully, and can also correct images with fuzzy con-

tours without halation. BCR by itself greatly improved

the ability to remove background elements compared to

the case where no BCR was introduced. On the other

hand, the introduction of DCR improves the correction

of the jewelry part and the ability to remove some back-

ground elements compared to the case where nothing is

introduced. This may be due to the fact that DCR pro-

motes attention to the foreground jewelry, and suppresses

attention to the background during GAN learning.

4.3 Ablation studies

4.3.1 Comparison between TC-ShadowGAN

and CycleGAN

In this Subsection, we compare the jewelry image cor-

rection by TC-ShadowGAN1)and CycleGAN8). Figure

7 shows that TC-ShadowGAN is superior to CycleGAN

in correcting jewelry images with strong background el-

Table 1 Quantitative evaluation of methods
Algorithm PSNR ↑ SSIM ↑ LAB ↓ FID ↓
CycleGAN 21.36 0.8974 10.81 58.63

TC-ShadowGAN 21.67 0.8967 9.716 55.44
21.66 0.8968 9.730 55.96

TC-ShadowGAN 22.51 0.9040 8.794 52.37
BCR 22.47 0.9035 8.885 52.45

TC-ShadowGAN 21.68 0.8964 9.823 54.97
DCR 21.68 0.8963 9.811 54.15

TC-ShadowGAN 22.68 0.9031 8.768 52.81
DCR+BCR 22.67 0.9029 8.755 53.02

Fig. 7 Comparison between TC-ShadowGAN and Cy-
cleGAN : (a) Original image, (b) Ground truth
(c) TC-ShadowGAN (d) CycleGAN (e) Cy-
cleGAN+BCR (f) CycleGAN+DCR (g) Cycle-
GAN+BCR+DCR

ements. In particular, TC-ShadowGAN eliminates the

problem pointed out in Fig. 2 that the jewelry area be-

comes too bright in CycleGAN. CycleGAN has to learn

the inverse-transformation from the ground truth to the

captured image without additional information such as

background color, lightening conditions, shadow position,

or color tone.

We also apply BCR and DCR to CycleGAN. The per-

formance of TC-ShadowGAN is boosted by introducing

BCR and DCR. On the other hand, in the case of Cycle-

GAN the performance is not improved or even becomes

worse as shown in Table 2 and Fig. 7. This result sug-

gests that the introduction of BCR and DCR may not be

suitable for GANs such as CycleGAN, where learning is
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Table 2 TC-ShadowGAN and CycleGAN

Algorithm PSNR↑ SSIM↑ LAB↓ FID↓
TC-ShadowGAN 21.67 0.8967 9.716 55.44

21.66 0.8968 9.730 55.96
CycleGAN 21.36 0.8974 10.81 58.63

CycleGAN (BCR) 20.42 0.8837 13.11 64.15
CycleGAN (DCR) 21.18 0.8953 11.32 60.18

CycleGAN (BCR+DCR) 21.10 0.8934 11.93 63.12

Fig. 8 Effect of BCR and type of data augmentation on
corrected images

performed in a bidirectional transformation. This is pre-

sumably because the translation from ground truth to the

original image, which has no correct answer, emphasizes

superfluous parts such as shadows by BCR and DCR.

4.3.2 Effect of data augmentation and BCR

We have investigated many types of data augmenta-

tions and found that the combination of the random crop

and flip, which is used in the main results, achieves the

best performance. In this section, we show the results

where other types of image transformations are applied

for data augmentation in the original BCR2)and Sim-

CLR15). Now we add color distortion such as brightness,

saturation, contrast and hue, each of which is set to 0.5

in torchvision.transforms.ColorJitter. As a control ex-

periment, we add color distortion as data augmentation

without introducing BCR.

Figure 8 shows the effect of BCR on the corrected

images. The jewelry correction performance is extremely

poor when the data augmentation is applied to only real

images without BCR (DataAug). When data augmen-

tation is introduced only for real images in GAN, the

discriminator learns the augmented images as part of

the real images, and thus learns the distribution of the

real images incorrectly. As a result, the generator learns

to produce images affected by advanced and complex

Table 3 Effect of data augmentation in BCR
Algorithm PSNR↑ SSIM↑ LAB↓ FID↓

TC-ShadowGAN 22.51 0.9040 8.794 52.37
(BCR) 22.47 0.9035 8.885 52.45

TC-ShadowGAN 17.68 0.8368 17.15 137.3
(DataAug) 17.69 0.8368 17.22 136.0

TC-ShadowGAN 22.26 0.9009 9.218 58.15
(BCR, +Color) 22.25 0.9014 9.225 57.65

data augmentations such as cut out and color distortion.

Therefore, random crop and flip are often used together

in conventional GANs.

Consistency Regularization (CR) and its extension

BCR solve this problem. CR is a regularization method

that inputs real images with and without data augmenta-

tion to the discriminator and ensures consistency in the

output. CR is defined as

LCR = ||D(xreal)−D(t1(xreal))||2 (9)

where xreal is the real image, and t1(·) is the data aug-

mentation.

Adding color distortion to the random crop and flip

results in a slight drop in performance (BCR, +Color).

The background is not removed sufficiently, or the jewelry

is too bright. Table 3 shows quantitative results which

are consistent with the qualitative results in Fig. 8.

4.3.3 Hyperparameter for DCR

The DCR hyperparameters were determined by ex-

perimenting with various parameters using a brute-force

method, focusing on the values that were considered op-

timal in the original paper3). When introducing DCR,

the patch size should be at least 0.7 times larger than

the original image size3)and resized to 128 x 128 pixels.

For each patch, color distortion, which changes bright-

ness, saturation, hue, and contrast with a probability of

80% and grayscale with a probability of 20%, is applied.

The fixed threshold τ that determines the overlapping

area Ω in the two patches is set to two values, 0.5 and

0.73). Applying DCR is effective as shown in Fig. 9.

τ = 0.5 is more suitable for removing background areas

than τ = 0.7 in the image of the blue earrings. However,

τ = 0.7 is more suitable for distinguishing foreground

and background within the jewelry area as shown in the

rightmost image.

We have also examined the effect of other types of

data augmentation. Four types of data augmentation are

added to the original data augmentation of color distor-

tion to accelerate the learning of representations of shape:

equalization, solarization, sharpness, and Sobel filter.

Quantitative evaluation of effect of DCR is shown in
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Fig. 9 Dependency of parameter τ(= 0.5, 0.7) of DCR
on correction results

Table 4 Hyperparameters for DCR
Algorithm PSNR SSIM LAB FID

TC-ShadowGAN 21.67 0.8967 9.716 55.44
21.66 0.8968 9.730 55.96

TC-ShadowGAN 21.6 0.8964 9.823 54.97
(DCR, 0.5) 21.68 0.8963 9.811 54.15

TC-ShadowGAN 21.68 0.8959 9.723 55.65
(DCR, 0.7) 21.67 0.8956 9.726 55.31

TC-ShadowGAN 21.79 0.8983 9.47 55.02
(DCR, 0.5, +) 21.80 0.8984 9.455 54.40

TC-ShadowGAN 21.93 0.8988 9.39 54.22
(DCR, 0.7, +) 21.91 0.8986 9.428 55.04

Table 4. The introduction of DCR to image-to-image

translation model is effective to correct jewelry images.

In particular, data augmentations that make the shape of

jewelry clearer, such as equalize, are effective in correcting

jewelry areas in the images (DCR, τ = 0.7, +). This may

be the result of suppressing easily learnable elements such

as color and promoting learning of less easily learnable

elements such as shape.

4.3.4 Hyperparameter for simultaneous appli-

cation of BCR and DCR

Zhao et al.2)combined BCR and contrastive loss, in-

troduced in SimCLR15)of self-supervised learning. Their

experimental results showed that the optimal parameters

for combining losses were λBCR = 5, λcntr = 0.1. In this

paper, we have introduced DCR instead of contrastive

loss with (a) λBCR = 5, λDCR = 0.1.

We have also tried other parameters, for example, (b)

λBCR = 10, λDCR = 1. Qualitative results show that

λBCR = 5, λDCR = 0.1 with τ = 0.7 for DCR is better

than other combination of parameters in Fig. 10. Quan-

titative evaluation, which focuses on jewelry part, also

Fig. 10 Hyperparameters for combining BCR and DCR:
(a) λBCR = 5, λDCR = 0.1, (b) λBCR =
10, λDCR = 1

Table 5 Hyperparameters for combining BCR and
DCR: (a) λBCR = 5, λDCR = 0.1, (b) λBCR =
10, λDCR = 1

Algorithm PSNR ↑ SSIM ↑ LAB ↓ FID ↓
(a) TC-ShadowGAN 22.68 0.9031 8.768 52.81

DCR0.5+BCR 22.67 0.9029 8.755 53.02

TC-ShadowGAN 22.59 0.9027 8.737 55.49
DCR0.7+BCR 22.58 0.9028 8.765 54.39

(b) TC-ShadowGAN 22.37 0.9016 9.233 52.62
DCR0.5+BCR 22.35 0.9015 9.260 51.95

TC-ShadowGAN 22.28 0.9004 9.294 52.46
DCR0.7+BCR 22.25 0.9003 9.3379 51.84

support that λBCR = 5, λDCR = 0.1 is better as shown in

Table 5.

5. Conclusions

Our contributions in this paper are as follows. First, we

have shown that TC-ShadowGAN is effective not only in

removing backgrounds but also in correcting jewelry ar-

eas in images with strong background elements because it

avoids the inverse transformation from the ground truth

image to the original image by applying the target consis-

tency. Second, introducing BCR improves the removal of

background elements. The reason for this improvement

is to prevent the discriminator from incorrectly learning

augmented jewelry images as real jewelry images, as in

conventional GANs. Third, the introduction of DCR im-

proves the ability to correct the jewelry areas because

it concentrates the GAN on the jewelry area and sup-
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presses attention to the background. Lastly, together

with previous studies10), we have shown that our pro-

posed method outperforms state-of-the-art methods in

jewelry image correction. Our proposed method does not

assume jewelry-specific properties and is not limited to

jewelry data. Whether the method is effective for any

other image groups is a subject for further study.

A possible future challenge is to introduce Adaptive

Discriminator Augmentation (ADA)16)instead of BCR.

When training GANs with the original datasets, small

dataset size causes overfitting of the discriminator, which

in turn affects the performance of the generator. ADA

adaptively controls the data augmentation of the input

to the discriminator depending on the overfittying state

of the model. The powerful diffusion models that have

been developed in recent years should also be considered

for future work.
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<Summary> Semantic segmentation is an important technique in various applications, such as autonomous driving,
medical imaging, and industrial inspection. Depth estimation, as one of the important components of scene understanding,
can be used to obtain effective depth information while utilizing only RGB images. In recent years, such depth information
has been used as an auxiliary feature to facilitate the semantic segmentation task. This study proposes a Simultaneous Fusion
Network(SF-Net) that simultaneously learns semantic segmentation and depth estimation tasks based on a monocular camera
image. The features are first extracted and strengthened by injecting contextual information using semantic labels through the
feature reinforcement module and then learned simultaneously by analyzing the imaging process to establish the relationship
between the size and depth of the objects in the image. A new loss function is represented by the geometric relationship.
Furthermore, a feature fusion module is constructed to perform image feature fusion on the common parts of depth estimation
and semantic segmentation tasks. By learning simultaneously, the accuracy of semantic segmentation can be improved by
utilizing the depth information obtained from depth estimation inference. We conducted experiments using the Cityscapes
dataset and the NYUDv2 dataset and verified the effectiveness of the proposed method.

Keywords: semantic segmentation, depth estimation, simultaneous learning

1. Introduction

Semantic segmentation, which aims to predict the class la-
bel of each pixel in an image, plays a vital role in various
applications such as autonomous driving, medical imaging,
and industrial inspection. In recent years, the methods us-
ing deep learning have shown excellent performance in vari-
ous segmentation tasks such as scene understanding, medical
images, and anomaly detection, but the segmentation results
obtained by learning using only RGB images often have lim-
itations. In comparison, multimodal data can provide more
spatial and contextual information for accurate scene under-
standing, where depth maps are often used as complementary
information to RGB images to improve segmentation accu-
racy1)–6). The introduction of depth information facilitates the
solution of semantic segmentation problems. It allows higher
accuracy and robustness to be achieved in complex scenes. For
example, there is usually a depth difference between the target
object and the surrounding background or objects, and obtain-
ing an accurate depth map helps to understand the relationship
between the position of each object in front of it and the po-
sition behind it. Thus, depth information can help improve
segmentation performance.

The acquisition of depth information based on visual in-
formation is more challenging than that of depth information
using an active sensor such as LiDAR. Depth estimation5),7)–11)

is also one of the important methods for scene understanding,
along with semantic segmentation methods12)–15). However,
as analyzed by He et al.16), depth estimation based on visual
information is ambiguous in some scenes. To improve the
accuracy of monocular depth estimation, we should eliminate
ambiguity as much as possible in the estimation process. As
one such method for eliminating ambiguity in the depth es-
timation process, it is considered to be promising to utilize
different information used in the semantic segmentation task.
Simultaneously performing these two tasks to improve both
the accuracy of depth estimation and semantic segmentation
becomes an attractive direction.

Many deep learning-based fusion methods17)–20)aim to per-
form image feature fusion by skillfully designing the network
structure. Though the geometric relationship between the phys-
ical size and the depth of an object in the image is considered to
be useful during the fusion process, it has not been effectively
utilized. He et al.21)effectively utilize the geometric relation-
ship between the physical size and the depth of an object in the
image. However, generally speaking, it is difficult to determine
the actual physical size of each object in the image. Consid-
ering the geometric constraints between the two has certain
limitations.

In this paper, we propose a simultaneous learning method
for conducting depth estimation and semantic segmentation
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tasks at the same time, and we also propose a novel one-
stage neural network architecture for simultaneous learning.
Using the perspective projection model, a zoom coefficient
is proposed based on the relationship between the size of the
segmented region and the depth value, and it is used to propose
a new loss function that can make it stabilized to evaluate the
quality of the depth estimation.

To effectively utilize the context of semantic information
in an image, we design a dual attention network so that it
can make more accurate predictions based on relevant feature
maps. In addition, we also designed a feature fusion module
to enhance the consistent features of the two tasks and thereby
obtain their common feature attention maps. To summarize,
the main contributions of this paper are as follows:

1. We propose a Simultaneous Fusion Network called SF-
Net that simultaneously learns semantic segmentation and
monocular depth estimation tasks.

2. We propose a new zoom loss function that can make it
stabilized to assess the quality of depth estimation.

3. We propose an efficient feature fusion module called FFM
to improve semantic segmentation performance by shar-
ing features of the two tasks.

4. Our one-stage model achieves competitive results with
other depth estimation and semantic segmentation meth-
ods on the two popular datasets. The effectiveness of our
approach is demonstrated.

2. Related Works
2.1 Semantic segmentation and depth estimation
Many deep learning-based methods have been developed to

solve semantic segmentation. FCN12)proposed an end-to-end
fully convolutional neural network architecture that enables
pixel-level semantic segmentation of an input image of arbi-
trary size by replacing fully connected layers with fully con-
volutional layers. Inspired by this, U-Net22)and RefineNet13)

had an encoder-decoder network architecture for a good fu-
sion of low-level and high-level semantic information. PSP-
Net23)and DeepLabV3+24)proposed the atrous spatial pyramid
pooling(ASPP) so that it can capture global information using
multi-scale information. DANet25)and CBMA26)had a dual-
attention mechanism to enhance the representation of image
features.

For the problem of learning depth from a monocular image,
Make3D27)introduced strong geometric assumptions about the
scene structure and manually represented them using Markov
random fields (MRF). Deep neural network-based methods
have recently made great progress in monocular depth esti-
mation tasks. Eigen et al.7)proposed two network modules for

coarse-grained global prediction and fine-grained local fine-
tuning, respectively. Liu et al.5)and Li et al.8)proposed com-
bining convolutional neural networks (CNNs) and conditional
random fields (CRFs) to enhance the model’s understanding of
global contextual information. DORN11)proposed to treat the
depth estimation problem as a classification problem that pre-
serves ordering information between categories, rather than
a complex continuous value prediction. MonoDepth10)intro-
duced a supervised learning method that used images with
depth information as labels to correspond to input images.
These two methods used only unimodal information. To get
higher-precision depth information, it remains a worthwhile
challenge to utilize other information except that used in the
depth estimation process effectively.

2.2 Multitask learning

Recently, multitask learning methods have improved the per-
formance of various computer vision problems. Several deep
learning networks using a multitask learning framework have
been proposed to perform semantic segmentation and depth
estimation simultaneously. Eigen et al.28)built a network ar-
chitecture containing three scales from coarse to fine to make
predictions for the depth values, surface normals, and semantic
labels, simultaneously.

PAD-Net3)proposed to facilitate semantic segmentation and
depth estimation using additional tasks that provide rich in-
formation for the two original tasks. CI-Net20)introduced an
attention module to enhance scene understanding and to ob-
tain inter- and intra-class correlations. The semantic labels of
the input image are used to generate an attention map to de-
termine whether pixels belong to the same class. This allows
the model to better understand the scene for subsequent pre-
dictions. It is evident that attentional mechanisms can actively
contribute to multitask learning.

Some of these methods benefited from the two-stage learn-
ing strategy and achieved good results. However, they incur
additional computational costs making it difficult to adapt to
real-world applications. In addition, most related works focus
on optimizing the shared features of the two tasks and do not
consider using geometric constraints to strengthen the link be-
tween semantics and depth information. SOSD-Net21)used a
perspective projection model to find the relationship between
the size of an object in an image and its depth value, called it
”semantic-objectness.” However, to represent this relationship,
it is necessary to measure the object’s actual size in the image.
Generally, it is difficult to accurately measure such value.
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Fig. 1 Perspective projection model

3. Our Method
3.1 Relationship between the size of a segmented region

and its depth value
This section describes our SF-Net for simultaneous learn-

ing of semantic segmentation and depth estimation. We first
introduce a perspective projection model to represent the re-
lationship between the size of the segmented region and the
depth value, and then we describe in detail the network struc-
ture of our SF-Net and the proposed feature fusion module.
Finally, our loss function for training our SF-Net is described.

The depth value for each pixel estimated from a single image
is usually uncertain and changes rapidly due to some errors dur-
ing depth estimation process. Such unstable changes in depth
values negatively affect learning process in neural networks.
Therefore, to find a metric instead of a depth value, we explore
the relationship between the objects’ actual size and its depth
value. Since it is often difficult to accurately measure the ac-
tual size of an object in an image, we consider the connection
between the two through a perspective projection model while
excluding the inaccessible parameters as much as possible.

As shown in Fig. 1, 𝑑 denotes the depth value, 𝑓 denotes the
focal length, 𝑆𝑡 and 𝑆𝑝 denote the actual area of the object and
the area on the image, respectively. The ratio 𝐼 of 𝑆𝑡 and 𝑆𝑝
can be expressed as follows:

𝐼 =
𝑆𝑡
𝑆𝑝
, (1)

Since 𝑆𝑡 is a fixed value, 𝑆𝑝 changes depending on the depth
value 𝑑. Therefore, when 𝑆𝑝 becomes smaller, the ratio 𝐼

becomes larger, and the corresponding 𝑑 also becomes larger.
Conversely, when 𝑆𝑝 increases, both 𝐼 and 𝑑 decrease. This
relationship between 𝐼 and 𝑑 can be said to be linear and can
be expressed using a scale factor 𝑎 as follows:

𝑑 = 𝑎𝐼, 𝑎 > 0, (2)

Hereafter, we call this scale factor the ”zoom factor.”
Substituting the Eq. (1) into the Eq. (2) yields the following

equation:

𝑎 =
𝑑𝑆𝑝

𝑆𝑡
. (3)

Moreover, using the projection perspective model illustrated
in Fig. 1, we obtain the following equations:

Δ𝑢 = 𝑢1−𝑢2,Δ𝑣 = 𝑣1 − 𝑣2,
Δ𝑋 = 𝑋1−𝑋2,Δ𝑌 = 𝑌1 − 𝑌2, (4)

where 𝑢∗ and 𝑣∗ represent the horizontal and vertical coor-
dinates of the image in Fig. 1, and 𝑋∗ and 𝑌∗ represent the
horizontal and vertical coordinates of the corresponding ob-
ject in Fig. 1. Δ∗ represents the difference between the 2
coordinate values, which are the width and height of the image
and its corresponding object in the 2D plane. Then based on
the proportionality, we can get the following formula:

Δ𝑢 = 𝑓
Δ𝑋
𝑑
,Δ𝑣 = 𝑓

Δ𝑌
𝑑
, (5)

Multiplying the above two gives:

𝑑2 =
𝑓 2Δ𝑋Δ𝑌
Δ𝑢Δ𝑣

, (6)

𝑆𝑡 and 𝑆𝑝 is equal to Δ𝑋Δ𝑌 and Δ𝑢Δ𝑣, respectively. Substi-
tuting these equations into Eq. (6) yields the following equa-
tion:

𝑑2 =
𝑓 2𝑆𝑡
𝑆𝑝

, (7)

After making adjustments, the following equation is obtained:

𝑆𝑝

𝑆𝑡
=
𝑓 2

𝑑2 ,
(8)

By combining Eq. (3) and Eq. (8), the zoom factor 𝑎 can be
obtained as Eq. (9).

𝑎 =
𝑑𝑓 2

𝑑2 =
𝑓 2

𝑑
, (9)

In Eq. (9), there is no area value, only the camera focal length
and depth value. The focal length 𝑓 of the camera is a fixed
value, and the depth value 𝑑 is a known value during training.

Depth values in the range −1.0 < 𝑑 < 1.0 may have a
detrimental effect to a zoom factor because the values of the
inversely proportional equation change rapidly in this range.
However, in the range 𝑑 > 1.0, this change can not happen.
In the range 𝑑 > 1.0, even if 𝑑 changes rapidly, the zoom
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factor 𝑎 does not change rapidly because there is an inversely
proportional relationship between 𝑑 and 𝑎.

Taking advantage of this characteristic, we propose to use the
zoom factor 𝑎 in the loss function for the depth estimation task
instead of using only the depth value. Thus, drastic changes
in the loss function due to sudden changes in the depth value
can be avoided during the depth estimation process, and the
quality of depth estimation can be evaluated stably. Finally, we
describe the loss function for the depth estimation task using
the function 𝑓𝑍𝑜𝑜𝑚 expressed by the following equation:

𝑓𝑍𝑜𝑜𝑚 (𝑑, 𝑑) = |𝑎 − 𝑎̂ | =
���� 𝑓 2

𝑑
− 𝑓 2

𝑑

���� = 𝑓 2
����𝑑 − 𝑑𝑑𝑑

���� , (10)

where 𝑑 is the predicted depth value and 𝑎̂ is the predicted zoom
factor obtained from 𝑑. The detail of the total loss function is
described in Section 3.3.

3.2 Network architecture
As shown in Fig. 2, our SF-Net consists of three parts (en-

coder part, feature enhancement part, and decoder part). The
encoder backbone acquires the features of an image, which are
enhanced by two feature enhancement modules. Furthermore,
low-level features are acquired at the encoding phase and fed
into the decoder layers by Encoder Feature Forwarding. Then,
multi-task feature fusion is performed through the Feature Fu-
sion Module (FFM) in the decoder phase. Finally, the semantic
segmentation and depth estimation predictions are obtained in
the two parallel decoding branches, respectively. The follow-
ing paragraphs describe each part of our SF-Net in detail.

Encoder part We use the encoding structure of ResNet as a
backbone for generating the initial feature maps. Because we
need to enhance features by further utilizing category labels,
we do not use the original decoding structure of ResNet. Since
the convolutional layer in ResNet has a small sensory field for
an extensive range of semantic information, it may lead to an
insufficient understanding of the global context by the network.
In addition, as the network deepens, the spatial resolution of
the feature maps decreases, which may lead to difficulty in
capturing the target boundaries.

Feature enhancement part The generated feature map is
input to the enhancement part. It is built with an atrous spatial
pyramid pooling (ASPP) and attention modules. ASPP can
perform atrous convolution layer of feature maps at different
sampling rates to obtain multi-scale contextual information. It
uses different expansion rates to capture sensory fields at dif-
ferent scales to improve the network’s perception of targets at
different scales. With ASPP, the network can better understand

the global contextual information in the image, which helps to
improve the performance. The attention mechanism allows the
network to assign different weights to information at different
locations when processing features. This helps the network to
better focus on the target region in tasks such as semantic seg-
mentation and reduces the sensitivity to irrelevant information.
As a result, this helps to determine the target boundary.

ASPP is used in Deeplabv3+, including a 1 × 1 convolution
layer, three atrous convolution layers with different rates, and
a global average pooling layer to integrate multi-scale infor-
mation. Then, the output of the ASPP module is concatenated
and fed into a 1×1 convolution layer(red block) to generate the
final feature map. The construction of the Attention Module is
inspired by DANet25)and CBMA26). It includes two attention
parts, which are channel attention and self-attention. As shown
in Fig. 3, the channel attention and the self-attention module
are connected in series to enhance the expressive ability of our
model.

The input-output relationship for the channel attention mod-
ule can be expressed as follows:

𝐹𝑐 = 𝜎(𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (𝐹𝑖))

+ 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (𝐹𝑖))) ⊗ 𝐹𝑖 ,
(11)

Here, 𝐹𝑖 ∈ R𝐶×𝐻×𝑊 is the input feature map, where 𝐶, 𝐻,
and 𝑊 is number of channels, the height, and the width of
the feature map, respectively. 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 and 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 rep-
resent the average pooling and maximum pooling operations,
respectively, and 𝑀𝐿𝑃 represents the multi-layer perceptron,
including two fully connected layers and a Relu activation
function. 𝜎 denotes the sigmoid function, and ⊗ denotes the
element-wise multiplication operation.

Then, the input-output relationship for the self-attention
module can be expressed as follows:

𝐹𝑠𝑒𝑙 𝑓 = 𝜎(
𝑄𝐾𝑇

√
𝐶𝑘

)𝑉, (12)

Q, K, and V are the query keys and values of the self-attention
module, respectively. Here, we take a linear transformation
of 𝐹𝑐 ∈ R𝐶×𝑀 using the parameter matrices 𝑊𝑞 ∈ R𝐶𝑞×𝐶 ,
𝑊𝑘 ∈ R𝐶𝑘×𝐶 , 𝑊𝑣 ∈ R𝐶𝑣×𝐶 gives 𝑄 = 𝑊𝑞𝐹𝑐 ∈ R𝐶𝑞×𝑀 ,
𝐾 = 𝑊𝑘𝐹𝑐 ∈ R𝐶𝑘×𝑀 , and 𝑉 = 𝑊𝑣𝐹𝑐 ∈ R𝐶𝑣×𝑀 . 𝐶𝑘,𝑣,𝑞 is the
dimension of keys, respectively, and 𝑀 = 𝐻 ×𝑊 . The output
feature 𝐹𝑠𝑒𝑙 𝑓 is computed by multiplying 𝑉 with the attention
map.

Decoder part As shown in Fig. 4, to perform both tasks
simultaneously, we design two parallel branches for semantic
segmentation and depth estimation, which are decoders for
different tasks.
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Fig. 2 The overview of our SF-Net architecture

Fig. 3 Our attention module

Given that the feature map 𝐹 ∈ R𝐶×𝐻×𝑊 from the decoding
phase after feature enhancement as input, the tasks of semantic
segmentation and depth estimation modules in both branches
are decoded at the feature layer. The general lack of low-level
semantic information in high-level features makes the model
prone to losing the basic geometrical structures, such as the
edges of the target.

So, we add the feature 𝑒𝑖 (𝑖 = 1, 2, 3) from the encoder
phase, which is used to fuse the low-level semantic informa-
tion. Specifically, as the initial input to the decoding phase, the
initial feature maps of the two tasks are added with the feature
𝑒𝑖 (𝑖 = 1, 2, 3) ∈ R𝐶×𝐻×𝑊 of the encoding phase to obtain the
initial feature fusion of low-level semantic features, and can be
expressed as 𝐹𝑠 = 𝐹𝑑 = 𝐹 + 𝑒𝑖 . The feature maps of the two
tasks are then upsampled three times to restore the image to
its original size. Finally, the semantic segmentation and depth
estimation results are obtained, respectively.

To extract common and complementary features among dif-
ferent tasks, we propose a feature fusion module that enhances
the feature representation capability in the model. The struc-
ture of the FFM is shown in Fig. 5. The FFM fuses the fea-

Fig. 4 Our two parallel decoding branches

tures extracted from different tasks to generate a shared weight
map and then enhances both tasks to output the information
containing the enhanced details. It focuses on common and
complementary features of tasks and facilitates information
transfer between tasks in a multi-task learning environment.
The feature fusion process of FFM can be summarized as fol-
lows. Two feature maps are first fused and processed once with
maximum pooling and upsampling.

𝐹 𝑓 𝑢𝑠𝑒 = 𝐶𝑜𝑛𝑣(𝑐𝑜𝑛𝑐𝑎𝑡 (𝐹𝑠 , 𝐹𝑑)), (13)

𝐹𝑢𝑝 = 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝐶𝑜𝑛𝑣(𝑀𝑎𝑥𝑃𝑜𝑜𝑙 (𝐹 𝑓 𝑢𝑠𝑒))), (14)

where 𝑀𝑎𝑥𝑃𝑜𝑜𝑙 and 𝑈𝑝𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 represent the maximum
pooling and up-sampling operations. 𝐶𝑜𝑛𝑣 represents the con-
volution operation of 3×3. Then the fused feature weight maps
are obtained:

𝐹𝑤𝑒𝑖𝑔ℎ𝑡 = 𝜎(𝐶𝑜𝑛𝑣(𝐹𝑢𝑝)), (15)

where 𝜎 represents the sigmoid function. Finally, the output
feature maps of the 2 branches are then generated:

𝐹𝑠 = 𝐹𝑠 + 𝐹𝑠 ⊗ 𝐹𝑤𝑒𝑖𝑔ℎ𝑡 , (16)
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𝐹𝑑 = 𝐹𝑑 + 𝐹𝑑 ⊗ 𝐹𝑤𝑒𝑖𝑔ℎ𝑡 , (17)

where ⊗ denotes element-wise multiplication.
In FFM, a shared weight map is calculated using the sigmoid

function to fuse the features required for the two tasks. Finally,
each feature map and shared weight map are integrated and
output. The two output feature maps are upsampled separately
and fed into the next level layer in FFM.

3.3 Loss function
The loss function of the proposed network is the sum of the

loss functions of two branch tasks: a semantic segmentation
task and a depth estimation task. The loss function for the
semantic segmentation task uses a cross-entropy loss function.
It can be described as follows:

L𝑠 = − 1
𝑁

𝑁∑
𝑛=1

𝑀∑
𝑚=1

𝑦𝑛𝑚 log 𝑦̂𝑛𝑚, (18)

Here, 𝑁 is the number of pixels, 𝑀 is the number of classes,
𝑦𝑛𝑚 is the truth label of the 𝑚th class of the 𝑛th pixel, 𝑦̂𝑛𝑚 is the
predicted label of the 𝑚th class of the 𝑛th pixel.

In the depth estimation task, we must first consider the pixel-
level error to minimize the difference between the prediction
result and the true value. The most straightforward way to
compute this error is to use the L2 norm. The loss function for
depth estimation can be described as follows:

L𝑑 =
1
𝑁

𝑁∑
𝑛=1

(𝑑𝑛 − 𝑑𝑛)2, (19)

Here,𝑑𝑛 is the truth depth value of the 𝑛th pixel, and 𝑑𝑛 is the
predicted depth value of the 𝑛th pixel.

However, the L2 norm is sensitive to outliers, and using
the L2 norm may lead to unstable depth estimation due to
the drastic changes in the depth values of individual pixels.
Therefore, we propose a new loss function based on Section 3.1,
which is more robust to outliers and can smooth out drastic
changes in depth values due to outliers. It can be described as
follows:

L𝑍𝑜𝑜𝑚 =
1
𝑁

𝑁∑
𝑛=1

( 𝑓 2
����𝑑𝑛 − 𝑑𝑛𝑑𝑛𝑑𝑛

����), (20)

Fig. 5 Our feature fusion module(FFM)

In the actual computation, since the depth value of the back-
ground class is 0, it may lead to a situation where 𝑑𝑛𝑑𝑛 = 0
during the calculation. This makes the function value explode
and results in the inability to correctly calculate the scaling loss
function for the corresponding pixel of the background class.
Therefore, as shown in Eq. (21), a trick is used in the calcu-
lation process, which is not obtained by direct derivation but
intentionally separates 𝑑𝑛−𝑑𝑛 and 𝑑𝑛𝑑𝑛 in a single calculation.
In this way, even if the depth value of the background class is 0
in the calculation, it will only make a few items 𝑑𝑛𝑑𝑛 = 0 and
will not affect the overall value. The whole calculation process
will also not be affected.

L𝑍𝑜𝑜𝑚 = 𝑓 2
1
𝑁

∑𝑁
𝑛=1

��𝑑𝑛 − 𝑑𝑛��
1
𝑁

∑𝑁
𝑛=1

��𝑑𝑛𝑑𝑛�� , (21)

where 𝑓 is a fixed value of the camera’s focal length.
Finally, the total loss function becomes Eq. (22) by com-

bining the three different loss functions. Here, 𝜆1,2,3 is the
weighting coefficient of each loss function, respectively.

L = 𝜆1L𝑠 + 𝜆2L𝑑 + 𝜆3L𝑍𝑜𝑜𝑚. (22)

4. Experiment

To verify the effectiveness of SF-Net, we conducted exper-
iments using the publicly available datasets CityScapes29)and
NYUDv230).

4.1 Dataset and data augmentation
The CityScapes dataset is a large-scale dataset for urban

scene understanding. It contains 5,000 high-quality pixel-level
annotated images, of which 2,975 are used for training, 500
for validation, and 1,525 for testing. The training and test data
in the dataset includes only the ground truth data for seman-
tic segmentation. The dataset contains 19 classes. Following
the data augmentation method of SOSD-Net21), because of the
computational overhead constraints, we resized the CityScapes
image size to 256×512, and the training data are augmented on
the fly during the training phase. The images are scaled with
a randomly selected ratio among {0.5, 0.75, 1, 1.25, 1.5, 1.75}.
In addition, images are also transformed using color transfor-
mations on HSV color space and flip with a chance of 0.5.

The NYUDv2 dataset is a dataset for indoor scene under-
standing. It contains 1,449 RGB-D images, of which 795 are
used for training, and 654 for testing. The dataset contains 40
classes. Furthermore, the dataset includes the ground truth data
for semantic segmentation and depth estimation. So, the pro-
posed method is evaluated in terms of two aspects, which are
semantic segmentation and depth estimation performance. Be-
cause of the computational overhead constraints, the input im-
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ages are resized to 240×320. The training data are augmented
on the fly during the training phase. The images are scaled
with a randomly selected ratio among {1, 1.25, 1.5, 1.75}. In
addition, the images are also transformed using color transfor-
mations on HSV color space and flip with a chance of 0.5.

4.2 Experiment details
Our method is implemented on the Ubuntu 22.04LTS plat-

form using PyTorch. The computer environment used for the
experiment is composed of an Intel(R) Core(TM) i9-9900K
CPU@3.60GHz and an NVIDIA GeForce RTX2080ti graph-
ics card. During the initialization stage, the weight layers in
the first part of the architecture are initialized using the cor-
responding pre-trained model (ResNet-50) on the ImageNet
classification task31). We use the Adam32)optimizer and set the
initial learning rate to 5𝑒−4. We set 𝜆1 = 1, 𝜆2 = 𝜆3 = 2.5𝑒−3
to balance the weights between loss functions.

To evaluate the performance of semantic segmentation, we
use mean intersection over union (mIoU), average accuracy
(mPA), and pixel accuracy (Acc) as evaluation criteria. To
evaluate the performance of depth estimation, we use the fol-
lowing metrics for evaluation:

• Average relative error (rel): It is the average of the abso-
lute value of the relative error of the depth value of each
pixel.

𝑟𝑒𝑙 =
1
𝑁

𝑁∑
𝑖=1

����𝑑∗𝑖 − 𝑑𝑖𝑑𝑖

���� (23)

• Root mean square error (rms): It is the square root of the
average of the square of the relative error of the depth
value of each pixel.

𝑟𝑚𝑠 =

√√√
1
𝑁

𝑁∑
𝑖=1

(
𝑑∗𝑖 − 𝑑𝑖

)2 (24)

• Absolute 𝑙𝑜𝑔10 error (𝑙𝑜𝑔10): It is the absolute value of the
relative error in the logarithm depth value of each pixel.

𝑙𝑜𝑔10 =
1
𝑁

𝑁∑
𝑖=1

��log10 (𝑑∗𝑖 ) − log10 (𝑑𝑖)
�� (25)

• Accuracy with threshold t: percentage (%) of 𝑑𝑖 such that
max( 𝑑𝑖𝑑∗

𝑖
,
𝑑∗
𝑖

𝑑𝑖
) = 𝛿𝑡 < 1.25𝑡 , 𝑡 = 1, 2, 3

,where 𝑑𝑖 is the predicted depth value of the 𝑖th pixel, 𝑑∗𝑖 is the
true depth value of the 𝑖th pixel, and 𝑁 is the number of pixels.

4.3 Ablation experiment
We conducted ablation experiments with different condi-

tions to validate the proposed model’s effectiveness and the
proposed method’s modules. These experiments include se-
mantic segmentation results and the fusion task of semantic
segmentation and depth estimation.

Table 1 Semantic segmentation results of our proposed model
based on CityScapes dataset

Att ASPP L𝑑 L𝑍𝑜𝑜𝑚 mIoU(%) mPA Acc

w/o
FFM

✓ 56.7 67.6 91.9
✓ 68.0 77.3 94.5

✓ ✓ 69.1 77.6 94.8

w/
FFM

✓ ✓ ✓ 70.9 79.6 95.2
✓ ✓ ✓ ✓ 71.3 79.7 95.3

Table 2 Semantic segmentation performance comparison of
multitasking algorithms based on CityScapes dataset

Methods mIoU(%)

Kendall33) 64.2
GradNorm34) 64.8

Ozan35) 66.6
ESOSD-Net21) 68.2

SF-Net 71.3

The conditions for an ablation experiment are with/without
the attention module(Att) alone, the ASPP module alone,
and the combination of the attention module and ASPP.
Furthermore, the conditions for an ablation experiment are
with/without L𝑠 + L𝑑 and L𝑠 + L𝑑 + L𝑍𝑜𝑜𝑚.

4.3.1 CityScapes experiment results
As shown in Table 1, derived from the validation set of the

CityScapes dataset, the test set is not used because it does not
include the ground truth data. Using two feature enhancement
modules improves the accuracy of semantic segmentation by
12.4% over the attention module alone and 1.1% over the ASPP
module alone in the cityscape dataset. With the addition of the
depth estimation task, the accuracy of semantic segmentation
is further improved. The accuracy was 70.9% when L𝑑 was
used alone and 71.3% when L𝑍𝑜𝑜𝑚 was also used, gaining a
2.2% improvement. This shows that the Zoom loss function
proposed in this study can effectively improve the accuracy of
semantic segmentation.

In addition, to verify the performance of the proposed model,
as shown in Table 2, we compared ESOSD-Net21), Kendall et
al.’s method33), and GradNorm34)and Ozan et al.’s method35).
The results of which are derived from the validation set of the
CityScapes dataset, the test set is not used because the compar-
ison methods use the validation set for performance evaluation.
Most of the comparison methods in multi-tasks based on the
Cityscapes dataset mainly apply the most important mIoU met-
rics for evaluation and do not provide the corresponding mPA
and Acc metrics. So, to ensure objectivity, we similarly use
only the mIoU metrics for comparison here. It can be seen that
SF-Net improves the semantic segmentation results by about
3.1% ∼ 6.9% compared to conventional methods. Figure 6
shows the semantic segmentation results. In Fig. 6, the first
row shows input images, the second shows the true value, and
the third shows the prediction results.
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Fig. 6 Examples of segmentation results based on CityScapes dataset

Fig. 7 Examples of weight map of FFM

Table 3 Semantic segmentation results of our proposed model
based on NYUDv2 dataset
Att ASPP L𝑑 L𝑍𝑜𝑜𝑚 mIoU(%) mPA Acc

w/o
FFM

✓ 39.7 51.3 72.0
✓ 46.1 59.3 74.9

✓ ✓ 46.8 59.3 75.1

w/
FFM

✓ ✓ ✓ 47.6 59.3 77.4
✓ ✓ ✓ ✓ 48.1 60.8 77.4

Similarly, to reveal how FFM focuses on shared features, we
visualize the weight map of 𝐹𝑤𝑒𝑖𝑔ℎ𝑡 . This weight map is from
the last FFM in the decoding phase with 64 feature channels,
as shown in Fig. 7. It can be seen that the weight mapping
focuses on the common features of the two tasks, such as the
edges, and shapes of the objects. These are consistent with the
common features of the two tasks.

4.3.2 NYUDv2 experimental results
As shown in Table 3, these results are derived from the test

set of NYUDv2 dataset. The semantic segmentation accura-

cies are improved by 7.1% (Att) and 0.7% (ASPP) when using
two feature enhancement modules (ASPP & Att) and when
using a single feature enhancement module. When using two
feature enhancement modules for the semantic segmentation
and depth estimation task, the semantic segmentation accuracy
was 48.1%, and the proposed loss function term L𝑍𝑜𝑜𝑚 im-
proved by 0.5% compared to the conventional loss function
term L𝑑 .

To verify the performance of the proposed model on the
NYUDv2 dataset, we also compared our method with other re-
lated methods which included one-stage and two-stage(△ rep-
resents that this is a two-stage method.) strategies, as shown
in Table 4. It can be seen that the semantic segmentation
model of the proposed model obtains competitive results com-
pared to related methods. We see that the proposed method
has a relatively low mIoU compared to the prediction results
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Fig. 8 Examples of prediction results based on NYUDv2 dataset

Table 4 Semantic segmentation performance comparison of
multitasking algorithms based on NYUDv2 dataset

Methods mIoU(%) mPA Acc
FCN12) 29.2 42.2 60.0

Deng et al.14) 31.5 - 63.8
Eigen et al.28) 34.1 45.1 65.6

Arsalan et al.△4) 39.2 52.3 68.6
Context15) 40.6 53.6 70.0
CI-Net20) 42.6 - 72.7

ESOSD-Net21) 45.0 64.7 73.3
RefineNet13) 46.5 58.9 73.6
PAD-Net△3) 50.2 62.3 75.2

SF-Net 48.1 60.8 77.4

of PAD-Net, and also have relatively low mPA values com-
pared to the results of ESOSD-Net. On the other hand, our
method obtains relatively high Acc value. We consider that the
reason for this phenomenon is that the number of samples of
certain classes in the dataset is extremely small, and the pro-
posal model is not sufficiently learned for a few classes, leading
to unsatisfactory prediction results. Therefore, the proposed
model is yet to be optimized for the class balancing problem.

Table 5 shows the depth estimation results of the ablation
experiments based on the NYUDv2 dataset. These results are
derived from the test set of NYUDv2 dataset. When both
feature enhancement modules are used, rel is reduced from
0.153 to 0.144, rms is reduced from 0.499 to 0.462, and 𝑙𝑜𝑔10

is reduced from 0.068 to 0.060 as compared to no feature
enhancement module. After using the proposed Zoom loss
function, rel was reduced to 0.125, rms to 0.385, and 𝑙𝑜𝑔10

to 0.052. These values are the best values in the ablation
experiments.

Table 5 Depth estimation results of our proposed model based
on NYUDv2 dataset

Att ASPP L𝑑 L𝑍𝑜𝑜𝑚 rel rms 𝑙𝑜𝑔10

✓ 0.153 0.499 0.068
✓ ✓ 0.165 0.539 0.071

✓ ✓ 0.146 0.470 0.062
✓ ✓ ✓ 0.144 0.462 0.060
✓ ✓ ✓ ✓ 0.125 0.385 0.052

As shown in Table 6, we have compared the depth values of
our proposed method with other algorithms in the NYUDv2
dataset as well. DORN still gives the best results on the 𝑟𝑒𝑙
and 𝑙𝑜𝑔10 metrics, since it is optimized for a separate depth
estimation task and was trained using the full 120K (including
imprecisely labeled data) images of NYUDv2. Although the
experimental conditions are different, the results of our method
are close to those of DORN. It can be seen that our method
achieves the best results in the vast majority of indicators com-
pared to other methods.

Figure 8 shows the prediction results based on the NYUDv2
dataset, which include the results of depth estimation and se-
mantic segmentation obtained by the proposed model. The
first row shows the input images, the second row shows the
true value of the depth images, the third row shows the pre-
dicted result of the depth images, the fourth row shows the true
values of the semantic segmentation, and the fifth row shows
the predicted results of the semantic segmentation.

5. Conclusion

In this study, we developed a new fusion network structure
(SF-Net) for simultaneously learning semantic segmentation

84

IIEEJ Transactions on Image Electronics and Visual Computing Vol.12 No.2 （2024）



Table 6 Depth estimation performance comparison of multi-
tasking algorithms based on NYUDv2 dataset

Methods Error(lower is better) Accuracy(higher is better)

rel rms 𝑙𝑜𝑔10 𝛿1 𝛿2 𝛿3

Make3D27) 0.349 1.214 - 0.447 0.745 0.897
Liu et al.36) 0.335 1.06 0.127 - - -
Li et al.8) 0.232 0.821 0.094 - - -
Liu et al.5) 0.230 0.824 0.095 0.614 0.883 0.975
HCRF△37) 0.220 0.745 0.094 0.605 0.890 0.970

Eigen et al.7) 0.215 0.907 - 0.611 0.887 0.971
Roy et al.9) 0.187 0.744 0.078 - - -

Eigen et al.28) 0.158 0.641 - 0.769 0.950 0.988
Jafari et al△ .38) 0.157 0.673 0.068 0.762 0.948 0.988

He et al.16) 0.151 0.572 0.064 0.789 0.948 0.98
SOSD-Net21) 0.145 0.514 0.062 0.805 0.962 0.992
Laina et al.39) 0.129 0.583 0.056 0.811 0.953 0.988

CI-Net20) 0.129 0.504 - 0.812 0.957 0.990
PAD-Net△3) 0.120 0.582 0.055 0.817 0.954 0.987
DORN11) 0.115 0.509 0.051 0.828 0.965 0.992

SF-Net 0.125 0.385 0.052 0.856 0.979 0.996

and monocular depth estimation. We derived a zoom coeffi-
cient that represents the relationship between the size of the
divided region and the depth value and proposed a new loss
function using it. We constructed a new attention module to
utilize the semantic information in image features effectively.
Furthermore, we proposed a feature fusion module that im-
proves the performance of each task by calculating shared fea-
ture weights using feature maps extracted from different tasks.
We verified the effectiveness of our proposed method through
experiments and comparisons using the Cityscapes dataset and
NYUDv2 dataset. Utilizing the depth images in the dataset
to supervise the depth estimation task can effectively improve
the accuracy of semantic segmentation. Moreover, the simul-
taneous learning between semantic segmentation and depth
estimation tasks proved to be mutually beneficial and assisted
each other. It was worth emphasizing that the loss function
formulated based on the proposed zoom factor shows improve-
ments in semantic segmentation tasks. Our future work will
improve the forwarding of low-level features. We are consider-
ing introducing a gating mechanism to solve the noise problem
in low-level features and optimize the model performance.
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<Summary> In this paper, we propose a novel bit depth enhancement (BDE) model that considers

semantic contextual information by incorporating spatial feature transform (SFT) layers into the BDE

model. In the proposed method, we adopt the pixel-wise class probability maps of the input image obtained

by semantic segmentation as prior information for SFT. The SFT layer transforms from the input feature

maps into the modulated feature maps by considering the contextual information modulated using affine

parameters generated from the prior information. The proposed method considers the pixel-wise details by

a proposed network that preserves spatial dimensions and the contextual information by incorporating the

SFT layers conditioned with semantic information. Moreover, the proposed method adopts a perceptual

loss function to recover the visually natural luminance changes by considering the contextual information.

The experimental results show that the proposed BDE method achieves better performance compared with

existing DNN-based BDE methods for restoring 8-bit depth from 3,4, and 6-bit depths. In addition, we

investigate how to provide the contextual information to the BDE model, and show that providing it through

the SFT layer is effective compared with other providing methods.

Keywords: bit depth enhancement, de-quantization, de-banding, convolutional neural network, conditional

normalization

1. Introduction

In recent years, the advancement of display technology

has led to the development of high-end consumer display

devices capable of representing more extensive color in-

formation, such as those with 10 and 12-bit depth. These

technologies have improved visual experiences by repre-

senting more colors and smoother gradations, resulting

in realistic and visually appealing images. To fully har-

ness the potential of these advanced display devices, it

is crucial that image and video contents are recorded

with a higher bit depth than the display capability. How-

ever, high-bit depth contents have the inherent problem

of increasing the amount of data required for storage and

transmission.

To address this issue, bit depth enhancement (BDE)

techniques have gained significant attention in the field

of image processing. BDE aims to expand low-bit depth

images to high-bit depth images by estimating the miss-

ing least significant bits (LSBs), enabling the enhance-

ment of existing low-bit depth content to match the ca-

pabilities of modern high-bit depth displays. Neverthe-

less, simple BDE techniques often fall short in producing

satisfactory results and introduce artifacts that decrease

the visual quality of the enhanced images. Two common

artifacts caused by quantization errors are false contours

and missing details. False contours appear as visible steps

or bands in areas that should have smooth gradations of

color or brightness. Missing details refer to the loss of

subtle luminance changes within the quantization step.

To address these artifacts and improve the performance

of BDE, several BDE methods have utilized learning-

based approaches in recent years1)–8). In learning based-

BDE tasks, a variety of deep neural network (DNN) ar-

chitectures have been explored, each presenting distinct

advantages and inherent limitations. Encoder-decoder-

based architectures compress spatial dimensions to cap-

ture global contextual information, potentially compro-

mising pixel-wise detail information. Residual network

(ResNet)-based architectures that employ skip connec-

tions alongside convolution layers with same padding

to maintain spatial dimensions, can effectively preserve

pixel-wise detail information. However, the trade-off be-

tween capturing a large receptive field and preserving

pixel-wise details remains. Although increasing the depth

of neural networks enhances their ability to capture global
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contextual information, it also results in a higher compu-

tational cost.

Meanwhile, conditional normalization methods have

been shown to be effective in integrating contextual in-

formation into DNNs. These techniques, such as adap-

tive instance normalization (AdaIN)9), feature-wise lin-

ear modulation (FiLM)10), and spatial feature transform

(SFT)11), adjust the feature maps of a network based on

specific conditional information. With conditional nor-

malization, the network preserves the spatial details of

the features while infusing them with semantic contex-

tual information as the conditions.

In this paper, we propose a novel BDE model that pre-

serves pixel-wise details and global contextual informa-

tion by leveraging a ResNet-based architecture in com-

bination with SFT layers. The proposed method adopts

pixel-wise class probability maps of the input image, ob-

tained through semantic segmentation, as prior informa-

tion for the SFT layers. The SFT layer transforms the

input feature maps into modulated feature maps by in-

corporating contextual information using affine param-

eters generated from the prior information. Moreover,

the proposed method adopts the VGG-based percep-

tual loss function to consider the semantic contextual

information and recover the visually natural luminance

changes. Experiment results show that the proposed

BDE method achieves better performance compared with

existing DNN-based BDE methods for restoring 8-bit

depth from 3,4, and 6-bit depths. Furthermore, we in-

vestigate various approaches to provide contextual infor-

mation to the BDE model and show that incorporating

it through the SFT layers is the most effective method.

2. Related Work

2.1 Bit depth enhancement

BDE methods have been widely explored in the litera-

ture to increase the number of bits used to represent each

pixel, thereby expanding the range of possible color val-

ues and improving the overall visual quality of the image.

One of the simplest BDE method is zero padding (ZP).

In ZP, zeros are added after the LSB of each pixel in a

low-bit depth image to obtain an image with the desired

higher bit depth. Another traditional BDE method is

multiplication by ideal gain (MIG). MIG involves multi-

plying each pixel value in the low-bit depth image by a

constant factor to scale it up to the desired higher bit

depth. Bit-replication (BR)12)is yet another traditional

BDE method. In BR, the most significant bits (MSBs)

of each pixel in the low-bit depth image are replicated

to achieve the desired higher bit depth. While these tra-

ditional BDE methods are computationally efficient and

easy to implement, it does not provide any additional in-

formation to the image and may result in visible artifacts,

especially in areas with smooth gradients or subtle color

variations.

To address the limitations of these methods and effec-

tively remove false contour artifacts, advanced context-

aware algorithms have been proposed such as BDE by

contour region reconstruction (CRR)13)and content adap-

tive (CA) BDE14), and intensity potential for adaptive de-

quantization (IPAD)15). CRR calculates high-bit depth

pixel values based on the distances to the nearest con-

tour edges. Although CRR can largely eliminate false

contours, it blurs out details in regions with local ex-

trema. CA adaptively enhances the bit depth of an im-

age based on its local content. It improves CRR by uti-

lizing neighboring pixel values to interpolate the miss-

ing bits, addressing the blurry details in regions with lo-

cal extrema. However, the enhanced images still suffer

from over smoothing and unnatural false contours. IPAD

takes a different approach by utilizing an intensity poten-

tial field to model the complicated relationships among

pixels and adaptively de-quantizes the image based on

the potential field. While IPAD achieves higher accuracy

compared to the above mentioned methods, it still suffers

from false contour and missing detail artifacts in scenarios

with a large number of missing LSBs.

2.2 Learning-based bit depth enhancement

In recent years, DNNs have emerged as a powerful

tool for various image processing tasks, including BDE.

Learning-based BDE methods leverage the hierarchical

feature extraction capabilities of DNNs to capture com-

plex contextual information and estimate enhanced im-

ages with reduced artifacts and improved visual quality.

Byun et al. proposed BitNet3), a convolutional neu-

ral network (CNN)-based BDE model with an encoder-

decoder-based architecture. The encoder part of BitNet

consists of multiple convolutional layers that gradually

downsample the input image and extract high-level fea-

tures. The decoder part then upsamples the feature maps

and reconstructs the enhanced image. By using a multi-

layered encoder, BitNet achieves a large receptive field

with a relatively small number of layers, enabling it to

capture global contextual information and effectively sup-

press false contours over wide and smooth regions in the
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image. However, the spatial compression of feature maps

in the encoder may result in the loss of pixel-wise de-

tails, especially in areas with high-frequency components.

To address the issue of recovering fine details, Zhao et

al. introduced a deep BDE network (BDEN)5), a BDE

model based on a deep ResNet architecture16). BDEN

utilizes convolution layers with same padding to extract

detailed feature maps while preserving their spatial di-

mensions. By maintaining the resolution of the feature

maps throughout the network, BDEN is able to accu-

rately recover missing LSBs in high-frequency regions of

the image. However, the deep-layered architecture re-

quired to obtain a large receptive field comes at the cost

of increased computational complexity and memory con-

sumption. To mitigate the computational cost while still

achieving a large receptive field, Zhao et al. also pro-

posed a lighter but efficient BDE network (LBDEN)6),

which incorporates dilated convolutions into the BDEN

architecture. By replacing some of the standard convo-

lution layers in BDEN with dilated convolution layers,

LBDEN can expand its receptive field without increas-

ing the number of parameters and computational cost,

and capture a global contextual information while main-

taining pixel-wise details. However, the use of dilated

convolutions may result in a reduction of local connec-

tivity and spatial coherence, as the gaps between kernel

elements can cause the network to miss important local

patterns.

Due to this trade-off between capturing local and global

information while maintaining computational cost, simul-

taneously addressing false contour and missing detail ar-

tifacts remains a significant challenge in the field of BDE.

2.3 Conditional normalization

Conditional normalization methods adjust feature

maps through affine transformations based on parameters

derived from specific conditional information9)–11). These

methods have been explored for incorporating contextual

information into DNN architectures.

Huang et al. proposed an adaptive instance normal-

ization (AdaIN) for style transfer, which aligns the mean

and standard deviation of content features with those of

style features9). Perez et al. proposed feature-wise linear

modulation (FiLM), which learns affine parameters for

each feature map from conditional information and nor-

malizes the intermediate features accordingly10). By ap-

plying these learned affine transformations to normalize

the intermediate features, FiLM enables the network to

modulate its feature representations based on the given

context. Wang et al. presented spatial feature trans-

form (SFT), which applies different normalizations for

each feature map and spatial dimension using a learnable

mapping function11). SFT offers more spatially flexible

feature modulation compared to FiLM.

3. Proposed Method

In this paper, we propose a novel BDEmodel that lever-

ages a ResNet-based CNN architecture with SFT layers

to preserve pixel-wise details and global contextual infor-

mation. The motivation of the proposed method is to

achieve both suppression of false contours and restora-

tion of details by providing the class probability maps

obtained by semantic segmentation model as contextual

information. These contextual information can be used

to modulate the intermediate features of the network to

achieve a contextualized prediction of the LSBs.

3.1 Spatial feature transform

A SFT obtains the modulation parameters (γ,β) for

each element of the intermediate feature maps F based

on the given conditions Ψ, and modulates the feature

maps based on the obtained parameters11). The SFT is

formulated by

SFT(F |Ψ) = γ ⊙ F + β (1)

where, γ and β indicate the affine parameters for scal-

ing and shifting, F is feature maps and ⊙ is Hadamard

product.

The structure of the SFT layer for incorporation into

DNNs is shown in Fig.1. In the SFT layer, affine parame-

ters for scaling and shifting are separately generated from

the given conditional information using two convolutional

layers and Leaky ReLU17). Then, the SFT layer outputs

the modulated feature maps by the element-wise multipli-

cation and the element-wise summation of the generated

affine parameters to the input feature maps.

Fig. 1 Illustration of SFT layer
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3.2 Network architecture

We design a novel network architecture that incorpo-

rates the SFT layer into the ResNet-based BDE network.

The detail of network structure is shown in Fig.2. The

network consists of three main parts: initial embedding,

feature extraction, and reconstruction. The initial em-

bedding stage comprises a single convolutional layer that

embeds the input image into feature maps with 64 chan-

nels. This step helps to capture the low-level features and

prepares the input for further processing. The feature

extraction stage is a stack of 16 residual blocks (RBs),

where each RB consists of two convolutional layers and

a skip connection that bypasses the input. This stage is

responsible for extracting high-level features and captur-

ing the contextual information necessary for the enhance-

ment process. Additionally, we incorporate SFT layers

before each convolutional layer in each RB and after the

stack of RBs. The structure of the SFT layer is the same

as shown in Fig. 1. The input to each SFT layer is the

conditional information extracted from the segmentation

map obtained by the pre-trained segmentation network

applied to the input image. The conditional informa-

tion is processed by four convolutional layers to extract

the relevant contextual information. The reconstruction

stage consists of four convolutional layers and is respon-

sible for mapping the residuals between the input low-bit

depth image and the target high-bit depth image from

the extracted features. This stage aims to generate the

final enhanced image by incorporating the learned con-

textual information and preserving the pixel-wise details.

All convolutional layers in the network have a 3×3 ker-

nel size. The activation function used in the condition

network is Leaky ReLU, while ReLU is used in the other

parts of the network. By leveraging the SFT layers and

incorporating semantic contextual information, our pro-

posed network architecture is designed to effectively en-

hance low-bit depth images while capturing the semantic

contextual modulation and preserving the fine details of

the input image.

3.3 Loss function

In the context of BDE tasks, it has been observed that

relying solely on the mean squared error (MSE) loss func-

tion can lead to the retention of artifacts, such as false

contours, in the enhanced images. To address this issue,

various alternative loss functions have been explored and

considered.

Liu et al.18)demonstrated that replacing the MSE loss

with the perceptual loss, which is essentially the MSE loss

computed on the features extracted from the pre-trained

VGG-19 network19), can significantly suppress false con-

tours in the reconstructed images. The perceptual loss

takes into account the high-level features learned by the

VGG-19 network, which capture more semantic and per-

ceptual information compared to pixel-wise differences.

Inspired by this finding, we adopt a perceptual loss in

the proposed method to effectively suppress false contour

artifacts while preserving the semantic and perceptual

properties of the image. In BDE tasks, while low-level

features are typically emphasized due to the importance

of local details, the proposed method also considers se-

mantic contextual information obtained obtained from

segmentation model. To balance these aspects, we have

empirically selected the feature maps from the 8th layer

of the VGG-19 network as the basis for computing the

perceptual loss.

Fig. 2 Illustration of network architecture
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The perceptual loss is formulated as follows:

L =
1

WHC

HWC∑
i=1

(V GGi(I)− V GGi(Î))
2 (2)

where i represents the index of the feature maps in the 8th

layer of the VGG-19 network, and W , H, and C denote

the width, height, and channel dimensions of the feature

map, respectively. I represents the ground truth high-

bit depth image, and Î represents the enhanced image

generated by our proposed model.

4. Experiments

In the experiments, we use OutdoorSeg dataset11)used

for 8-bit images, and the Sintel dataset20)and the MIT-

Adobe FiveK dataset21)for 16-bit images. The Out-

doorSeg dataset is natural image of outdoor scene con-

sisting of 9,900 images with 8-bit depth, including 8,447

images collected from the ADE dataset22), 899 from the

Flickr website and 554 from the COCO dataset23). The

Sintel dataset is a short animation film consisting of

21,312 frames with 16-bit (436 × 1024 pixels). The MIT-

Adobe FiveK dataset is a natural image with different

tones adjusted by five photography experts, each consist-

ing of 5,000 photographs with 16-bit. For 8-bit training

dataset, we randomly selected 1,414 images from the Out-

doorSeg dataset, and randomly cropped them to 64×64

patches, and quantized into the 3, 4 and 6-bit depth and

dequantized into 8 bit depth by the ZP. For 16-bit train-

ing dataset, we randomly selected 2,000 images: 1,000

from the Sintel dataset and 1,000 from images a0001-

2000 of the MIT-Adobe FiveK dataset adjusted by ex-

pert C, and randomly cropped them into 64×64 patches,

and quantized into the 3 and 4-bit depth and dequan-

tized into 16-bit depth by the ZP. Based on the experi-

mental settings used in previous study7), the MIT-Adobe

FiveK dataset is downsampled to half the size in each

spatial dimension before cropping. The mini-batch size

is set to 4. Our model is optimized by Adam optimizer24)

with β1 = 0.9, β2 = 0.999 and ϵ = 10−8. The learn-

ing rate is 2 × 10−4 initially and is halved every 200

epochs. For testing, we use 300 images from the Out-

doorSceneTest300 dataset as 8-bit depth images, and 100

images from a4901–5000 of the MIT-Adobe FiveK dataset

as 16-bit depth images.

4.1 Segmentation network

Following SFTGAN11), we use an 8-class segmentation

model proposed by Liu et al.25)pre-trained on the COCO

dataset and fine-tuned with the ADE dataset as the seg-

mentation network in proposed method.

To confirm the performance of this pre-trained segmen-

tation model for low-bit depth images, we calculated the

mean Intersection over Union (mIoU) between the pre-

dicted segmentation maps for low-bit depth images and

the ground truth labels. Table 1 shows the mIoU values

for 3, 4, 6, and 8-bit depth images, and Fig.3 illustrates

the segmentation maps for 3 and 8-bit depth images. As

shown in these results, the reduction in mIoU for low-bit

depth images is limited, indicating that this segmentation

model is robust to decreases in bit depth. While there is a

slight decrease of 0.0325 in mIoU for 3-bit depth images,

the segmentation maps show close results to the 8-bit

depth images, confirming that this segmentation model

maintains relatively consistent performance even at lower

bit depths. Therefore, in this experiments, we use this

segmentation model regardless of the quantization level.

4.2 Comparison with conventional methods

The proposed method is compared with conventional

CNN-based BDE methods, BitNet3)and BWBDR7). For

an objective evaluation of BDE performance, two assess-

ment indices are adopted: composite peak signal-to-noise

ratio (CPSNR) and structural similarity (SSIM). The

CPSNR is calculated as follows:

CPSNR = 10 log10

(
L2

MSE

)
(3)

Table 1 mIoU values for different bit depth
Bit depth 3-bit 4-bit 6-bit 8-bit

mIoU 0.5339 0.5632 0.5696 0.5664

(a) 3-bit

(b) 8-bit

(c) Segmented 3-bit

(d) Segmented 8-bit

Fig. 3 Segmentation results for different bit depth from
training data
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where L is the dynamic range of the pixel values, de-

termined by the bit-depth b of the reference image, and

given by L = 2b − 1. The MSE between reference image

y and enhanced image x is calculated as:

MSE =
1

N

N∑
i=1

(xi − yi)
2 (4)

where xi and yi represent the pixel values of x and y,

respectively, and N is the total number of pixels. The

SSIM is calculated as follows:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(5)

where µx and µy are the mean values of x and y, σ2
x and

σ2
y are the variances, and σxy is the covariance between

x and y. These values are computed within a sliding

window of size 11×11. The constants C1 and C2 are

defined as C1 = (0.01L)2 and C2 = (0.03L)2.

Table 2 shows the CPSNR and SSIM results of restor-

ing 8-bit depth from 3, 4 and 6-bit decpths for the com-

parison methods and the proposed method. The best

value is indicated in red and the second best value is in-

dicated in blue. As shown in this table, our method pro-

vides better accuracy compared with other BDE methods

in all assessment indices. Particularly in comparison with

BWBDR, which shows the second best accuracy in all

assessment indices, our method demonstrates an average

improvement of approximately 0.97 [dB] in CPSNR and

0.021 in SSIM for the restoration of 3, 4 and 6-bit depths.

To further validate these improvements, we conducted

paired t-tests comparing our method with BWBDR, us-

ing a significance level of 0.05. The results showed sta-

tistically significant differences in almost cases except for

SSIM in 3-8 bit restoration.

Table 3 shows the CPSNR and SSIM results of restor-

ing 16-bit depth from 3 and 4-bit depths for the compari-

son methods and the proposed method. As shown in this

table, for 3-16 bit restoration, our method provides com-

petitive result with BWBDR. For 4-16 bit restoration,

while our method underperforms compared to BWBDR,

it provides conpetitive results with BitNet.

As a subjective evaluation, Fig.4 shows a part of the

BDE results of restoring 8-bit depth from 3-bit depths

by the comparison methods and our method. For “OST:

52” in Fig. 4, it can be seen that false contours contained

in the input remain on BitNet, and color distortion and

blurring are observed on BWBDR. In our method, false

contours in the input are smoothly suppressed, and the

colors are reproduced to close the ground truth compared

with other methods. For “OST: 77” in Fig. 4, the detailed

texture of the water surface becomes more homogenized

and less distinct on BitNet and BWBDR, whereas our

method recovers much of the textural detail. For “OST:

265” in Fig. 4, the BitNet results in a blurring of the

texture of the grassland, and BWBDR induces a color

that is slightly greener than the ground truth. On the

other hand, our method successfully recovers the grass-

land texture with a level of detail comparable to that of

the ground truth.

4.3 Ablation study

To evaluate the effectiveness of segmentation informa-

tion in BDE tasks, we conduct ablation studies on seg-

mentation information and the SFT layers. In these ex-

periments, we prepare four models: the proposed model,

a model without segmentation information (w/o seg), a

Table 3 Objective evaluation of conventional BDE
methods for restoring 16-bit depth

Method 3-16 bit 4-16 bit

ZP (Input)
CPSNR 23.20 ± 0.36 29.36 ± 0.28
SSIM 0.7133 ± 0.0911 0.8745 ± 0.0488

BitNet
CPSNR 33.02 ± 1.22 38.24 ± 1.24
SSIM 0.8918 ± 0.0436 0.9531 ± 0.0198

BWBDR
CPSNR 33.16 ± 1.16 38.75 ± 1.21
SSIM 0.8950 ± 0.0502 0.9574 ± 0.0181

Ours
CPSNR 33.18 ± 1.24 38.39 ± 1.62
SSIM 0.8950 ± 0.0516 0.9529 ± 0.0235

Table 2 Objective evaluation of conventional BDE
methods for restoring 8-bit depth

Method 3-8 bit 4-8 bit 6-8 bit

ZP (Input)
CPSNR 22.69 ± 0.47 28.75 ± 0.39 40.97 ± 0.50
SSIM 0.8008 ± 0.0656 0.9172 ± 0.0360 0.9930 ± 0.0045

BitNet
CPSNR 32.84 ± 1.19 38.22 ± 1.14 47.21 ± 0.95
SSIM 0.9302 ± 0.0219 0.9728 ± 0.0117 0.9958 ± 0.0020

BWBDR
CPSNR 33.41 ± 1.23 39.25 ± 1.10 48.37 ± 0.59
SSIM 0.9423 ± 0.0202 0.9776 ± 0.0116 0.9968 ± 0.0021

Ours
CPSNR 34.13∗ ± 1.69 40.32∗ ± 2.36 49.49∗ ± 1.81
SSIM 0.9443 ± 0.0263 0.9804∗ ± 0.0171 0.9974∗ ± 0.0026

∗ Indicates statistically significant difference (p < 0.05) compared to the BWBDR
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(a) OST: 52

(d) BWBDR

(b) Input (ZP)

(e) Ours

(c) BitNet

(f) Ground truth

(g) OST: 77

(j) BWBDR

(h) Input (ZP)

(k) Ours

(i) BitNet

(l) Ground truth

(m) OST: 265

(p) BWBDR

(n) Input (ZP)

(q) Ours

(o) BitNet

(r) Ground truth

Fig. 4 Subjective evaluation for BDE results of recovering 8-bit from 3-bit on OST
dataset
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model without the SFT layers (w/o SFT), and a model

without both segmentation information and the SFT lay-

ers (w/o both). For the model without segmentation in-

formation, we design the SFT layers to receive zero vec-

tors as conditional information instead of semantic class

probability maps, effectively eliminating the considera-

tion of contextual information. For the model without

the SFT layers, we remove all SFT layers from the pro-

posed model and concatenate the semantic class proba-

bility maps along the channel dimension of the input low-

bit depth image. For the model without both segmenta-

tion information and the SFT layers, we use the standard

ResNet-based CNN architecture without any module or

information. This model serves as the baseline to evaluate

the individual and combined contributions of segmenta-

tion information and the SFT layers to the BDE task.

Table 4 shows the CPSNR and SSIM results of restor-

ing 8-bit depth from 3, 4 and 6-bit depths for the ablation

models and the proposed model. As shown in this table,

the proposed model achieves superior performance in al-

most all metrics and comparable performance in some

others. Comparing the “w/o seg” to the baseline model,

we observe that it performs comparably to or better than

the baseline in most metrics. This can be attributed to

the increased number of parameters in the model due to

the SFT layers. On the other hand, comparing the “w/o

SFT” to the baseline model, we observe that it has infe-

rior performance compared to the baseline in the restora-

tion from 4-8 bit and 6-8 bit. This can be explained

by the relative decrease in the amount of input image

information at the input layer, caused by concatenating

the class probability maps along the channel direction.

These results demonstrate the effectiveness of the pro-

posed BDE method in efficiently infusing semantic con-

textual information through the SFT layers. To further

validate these observations, we conducted paired t-tests

with a significance level of 0.05 comparing our proposed

model with “w/o seg” and “w/o SFT” respectively. The

results showed that a statistically significant difference

is only observed in the CPSNR for 4-8 bit restoration

when comparing our proposed model to the “w/o seg”

model. While the numerical improvements in other cases

are promising, they were not found to be statistically sig-

nificant.

5. Discussion

In comparison with the conventional methods, the pro-

posed method has shown improved performance in restor-

ing 8-bit depth. The improvements in both objective

and subjective evaluations indicate that semantic infor-

mation enables more context-aware BDE, particularly in

challenging areas such as restoration of missing details

and the suppression of false contours. However, the pro-

posed method did not achieve the same improvements

in restoring 16-bit depth. This limitation can be at-

tributed to the greater diversity of the MIT-Adobe FiveK

dataset used for 16-bit restoration, which contains numer-

ous classes that the segmentation model used in the pro-

posed method is unable to classify. These unseen classes

result in less accurate semantic information, which in turn

affects the restoration accuracy. To further verify the

BDE performance on high bit-depth images and the gen-

eralization capability across diverse images, it is beneficial

to use semantic segmentation models capable of handling

more diverse classes and adopt training datasets contain-

ing more diverse semantic information.

We analyzed the relationship using the Pearson cor-

relation coefficient between segmentation accuracy, mea-

sured by mIoU, and image assessment indices, CPSNR

and SSIM, for restoring 8-bit depth from 3-bit, 4-bit, and

6-bit depths. A weak positive correlation was observed

between mIoU and CPSNR, which gradually strength-

ened as bit depth increased. Specifically, the correlation

coefficients between mIoU and CPSNR are 0.1951 for 3-

bit, 0.2556 for 4-bit, and 0.2780 for 6-bit. These results

suggest that semantic segmentation as prior information

contributes positively to the BDE accuracy. In contrast,

the correlation coefficients between mIoU and SSIM ex-

Table 4 Objective evaluation of ablation study
ZP (Input) w/o both w/o seg w/o SFT Ours

3-8 bit
CPSNR 22.69 ± 0.47 33.90 ± 1.55 33.97 ± 1.57 34.07 ± 1.61 34.13 ± 1.69
SSIM 0.8008 ± 0.0656 0.9418 ± 0.0259 0.9429 ± 0.0249 0.9445 ± 0.0252 0.9443 ± 0.0259

4-8 bit
CPSNR 28.75 ± 0.39 40.16 ± 2.39 39.89 ± 2.35 40.12 ± 2.35 40.32∗ ± 2.36
SSIM 0.9172 ± 0.0360 0.9803 ± 0.0161 0.9787 ± 0.0173 0.9800 ± 0.0163 0.9804 ± 0.0168

6-8 bit
CPSNR 40.97 ± 0.50 49.41 ± 1.78 49.31 ± 1.88 49.41 ± 1.80 49.49 ± 1.81
SSIM 0.9930 ± 0.0045 0.9974 ± 0.0022 0.9973 ± 0.0021 0.9974 ± 0.0023 0.9974 ± 0.0025

∗ Indicates statistically significant difference (p < 0.05) compared to the “w/o seg”
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hibited a different pattern, with coefficients of 0.1197,

0.0728, and -0.0032 for 3-bit, 4-bit, and 6-bit, respec-

tively. These results suggest the possibility that the pro-

posed model synthesizes texture structures that are not

strictly faithful to the original, based on semantic contex-

tual information obtained from the segmentation model.

The design of the loss function requires careful con-

sideration. While the BDE task primarily focuses on

low-level features due to its emphasis on local details,

proposed method utilizes high-level features to consider

semantic information from segmentation. To achieve this,

we adopted a perceptual loss, utilizing the feature maps

from the 8th layer of the VGG-19 network. However, we

recognize that there is room for reconsideration in the

selection of layer. It is expected that deeper layers cap-

ture higher-level features and more semantic information.

On the other hand, relying on such deeper layers may re-

duce the ability to accurately reproduce fine textures and

details.

6. Conclusion

In this paper, we proposed a novel BDEmodel consider-

ing the semantic contextual information by incorporating

the SFT layers into the BDE model. The SFT layer con-

siders the semantic contextual information based on the

pixel-wise class probability maps of input image obtained

by semantic segmentation model. In the experiments, we

showed that the proposed BDE method achieves objec-

tively superior performance and subjectively suppresses

artifacts compared with existing CNN-based BDE meth-

ods for restoring 8-bit depth from 3,4, and 6-bit depths.

In addition, we investigated how to provide the contex-

tual information to the BDE model and showed that pro-

viding it through the SFT layer is effective compared with

other providing methods.

In the current study, we used a segmentation model

pre-trained on 8-bit images. However, by fine-tuning the

segmentation learning specifically for low-bit images, it

may be possible to obtain more appropriate contextual

information. Furthermore, using semantic segmentation

models capable of handling more diverse classes could

prove beneficial. This is expected to enhance general-

ization performance across diverse datasets and improve

results in high bit-depth restoration.
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Corporate Efforts for R&D on Video Coding and Its Practical Implementation (Part–1) 

：R&D Evolution from Delta Modulation through H.320/H.261  

Toshio KOGA (Fellow) †  

† NEC Corporation (1971 - 2000) and Yamagata University (2000 - 2012) 

<Summary>   Digital video signal processing for varieties of purposes including storage as well as transmission is currently playing a very important role 

in our daily life. NEC Corporation has been actively doing R&D on video coding since its dawn and incessantly making every effort for implementation of 

practical codecs, terminals, and systems. They include Delta Modulation for digitization, HO-DPCM for high quality TV transmission, and interframe coding 

for a broad spectrum of audiovisual services. The author believes it is quite beneficial to introduce a combined history of coding algorithm improvements and 

practical codecs based on them, since they will provide the overview of the technical history from theoretical and also practical aspects, and definitely there is 

no such review published so far. This survey paper consists of two parts and reviews the corporate R&D efforts with respect to video coding algorithm 

improvements and our contribution to progress in digital TV/video transmission services over the world for three decades since the mid-1960s. Part -1 (Chapter 

1and 2) mainly handles continued improvement of Delta Modulation and coding algorithms on intraframe and interframe prediction as well as entropy coding. 

Part - 2 (from Chapter 3 to 6) mainly shows effectiveness and significance of video coding through various application examples of codecs/terminals as well 

as standardization activities in which we were deeply involved. In addition, Part-2 includes a brief history of NEC’s CODECs in conjunction with continued 

algorithm improvements and several examples of practical use in businesses. 

Keywords: video coding, NTSC signal, TDM signal, adaptive prediction, motion compensation, entropy coding, H.120/Part 3, H.320/H.261, 

interoperability test 

1. Introduction

Pulse Code Modulation (PCM) was invented by A. H. 

Reeves in 1937 and theoretically established by C. E. Shannon 

in 1948. It is the most fundamental digital means for represent-

ation of every kind of information and for transmission as well 

as storage. First PCM transmission experiment was conducted 

by AT&T in 1949, using 4 GHz radio links.  

In parallel with the progress in digitization of network 

facilities, signal processing was also going digital, targeting at 

telephone at first then at video signals. In the 1960s, Delta 

Modulation (ΔM) was a unique and a realistic possible solution 

for digital video communication. In the 1970s, research activities 

on video coding quickly shift to interframe coding worldwide1). 

NEC also started R&D activities on interframe coding at the 

same time and in parallel extended works on ΔM and intraframe 

coding to NTSC Color TV signal. Early in the 1980s, Motion 

Compensation in real-time became possible and its improve-

ment was discussed extensively2). Along with the development 

of coding algorithms, necessity of international standardization 

was recognized worldwide in the mid-1980s. Meanwhile, 

VLSIs were deployed in manufacturing codecs3). 

In early days of progress in digital technology represented 

by networks and computers, NEC advocated “Declaration of C 

& C ”, a concept of “fusion of computers and communications 

technologies.” The Declaration told us that “early in the 21st 

century, it will be possible to talk and see between any persons, 

at any time, at any place on earth, and that this will require an 

integration of technologies for communications, computers, and 

television.” Our efforts for R&D on video coding and its 

practical implementation are in harmony with the Declaration.  

2. R&D Activities on Video Coding in NEC

  Digitization is an entrance to digital video coding and trans-

mission. However, Analog-to-Digital (A/D) converters for video 

signals were not realistic in the 1960s. It led us to study ΔM for 

videophone signals. When A/D converters were commercially 

available in the 1970s, predictive coding for NTSC TV signal, 

both intraframe and interframe, was included in our objectives.  

   Once digitized at a certain sampling frequency, video signals 

are coded by appropriate algorithms. Basically, video source 

coding consists of decorrelation, quantization, and  entropy 

coding. Prediction, transform coding, and their combination are 

major means for the decorrelation. Prediction can be improved 

by changing prediction functions adaptively corresponding to 

local properties in input signals. Quantization reduces the 

number of levels or their equivalents resulting from the 

decorrelation. Entropy coding is applied to the quantization 
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output, coding parameters, house-keeping information, etc. 

There are two major means for increasing or decreasing an 

amount of coded information, one being quantization char-

acteristics and the other sampling frequency. We studied all 

these items above and they are described in what follows.   

2.1 Digitization of TV/video signals by Delta Modulation 

If direct digitization of black-and-white video signal or NTSC 

Color TV signal by Delta Modulation (ΔM) is assumed, a very 

high sampling frequency is necessary.  An expected solution was 

to lower the frequency so that commercially available comp-

onents could be used. Our R&D activities on ΔM for black-and-

white videophone signals started in the mid-1960s and continued 

extensively to ΔM for NTSC signal in the early 1970s.  

2.1.1 ΔM for black-and-white videophone signals 

The study on the transmission of video signals by ΔM had 

been done. Picture quality degradation intrinsic to ΔM had been 

analyzed and its countermeasure discussed so far. Typically, 

false contouring is visible in flat areas, while blurriness and edge 

busyness appear on edges with sharp brightness change. In 1969, 

we developed a ΔM CODEC 4) for 1 MHz black-and-white 

videophone signals with a sampling frequency (fs) at 8 MHz, i.e., 

equivalent to 8 Mbit/sec. Asymmetrical DC Off-Set was found 

very effective in reducing false contouring by using this codec. 

Edge busyness was also reduced based on an analytical study5).  

ΔM to DPCM conversion 

In general, DPCM is better than ΔM with respect to coding 

efficiency. It needs digitization of input signals at first. As an 

alternative for expensive A/D converters, a digital filter was used 

in combination with ΔM to generate DPCM signals.  

  If Single Integration ΔM (SI-ΔM) is used to generate  directly 

PCM signals, a required frequency (fs) is as high as 160 MHz. 

Therefore, it is quite important to select fs as low as possible. As 

a means for lowering the sampling frequency, we proposed an 

idea of applying a sharp-cut-off filter to out-of-band frequency 

components in Double Integration ΔM (DI-ΔM) output 6). This 

resulted in reduction of the sampling frequency to 16 MHz for 

ΔM and to 2 MHz for DPCM, respectively. The linear DPCM 

output can be easily  converted to four-bit nonlinear DPCM, 

which corresponds to 8 Mbit/sec.   

  Fig.1  Frequency spectrum of NTSC color TV signal 

2.1.2 ΔM for NTSC Color TV signal 

   Efforts were also made for coding NTSC Color TV signal by 

ΔM. NTSC signal had been used in U.S., Japan, and many other 

countries for longer than half a century. NTSC signal with a 

nominal bandwidth of 4.2 MHz is an analog composite one in 

which color subcarrier fsc (3.58 MHz) is modulated by two color 

components (R-Y, B-Y) and multiplexed in the vicinity of the 

subcarrier. As a result, interference between luminance (Y) and 

chrominance (C) is minimized, as shown briefly in Fig.1. 

In coding, a de-emphasis filter is applied to suppress color S/N 

degradation by spectrum shaping of ΔM quantization error. A 

resonance circuit is implemented as the de-emphasis filter in the 

second integrator of a DI-ΔM coder. In decoding, a regular SI-

ΔM decoder is used and the decoded signal is applied further to 

an emphasis filter to reproduce the NTSC signal. Based on this 

idea, what may be called a Higher-Order ΔM CODEC was 

implemented7) in 1975. This research study was extensively 

succeeded by Higher-Order intraframe coding (HO-DPCM).  

2.2 Predictive coding of color TV signals 

The principle of predictive coding is shown in Fig.2. P(z) is a 

prediction function. Prediction error (e) in Encoder is difference 

between Input signal (X) and Predictor output. It is quantized (eො) 

and transmitted to Decoder after Entropy Coding. Quantization 

is applied to the prediction error to reduce the number of 

allowable levels or their equivalents. This greatly helps reduce 

data amount. At Decoder, the quantized prediction error  (eො)  is 

added to Predictor output to reproduce the video signal ( X ෡ ).  

There are three kinds of correlation in video signals, i.e., 

horizontal, vertical, and temporal. When a prediction function 

P(z) consists of a sample memory working as a pixel delay, it 

means that horizontal correlation is used. It is the most 

fundamental prediction for black-and-white video signals. When 

a line memory is available, vertical correlation can be used. In 

addition, when a frame memory is available, temporal correla-

tion can be also used.  

There are two choices in handling color TV/video signals 

depending on applications, one for high quality transmission 

such as CATV or  TV  broadcasting,  and  the other for wider  

Fig.2  Predictive coding principle 
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applications such as audiovisual services, image information 

retrieval, distance learning, etc. It is very important to handle 

color signals appropriately, taking applications into account.   

2.2.1 Composite coding for TV program broadcasting 

As an example of NTSC Color TV signal, two successive 

lines of Color Bar test signal are shown in Fig. 3 (a). Each line 

consists of horizontal sync, color subcarrier, and a frequency-

multiplexed video part. The subcarrier phase is inverted 

alternately line by line. Therefore, color phase of the pixels 

should be fully taken care of in prediction, intraframe or 

interframe. 

(1) Composite intraframe prediction and sampling frequency

Relationship between luminance (Y) and chrominance (C) in 

NTSC signal is briefly shown in Fig. 4 for video parts of two 

successive lines, when it is sampled at 3×fsc. In this example, the 

same color phase is seen every three samples. This leads to 

choosing a three-previous sample for prediction, i.e., third-order 

prediction, which can be described as Pb(z) = z -3 in the z-

transform notation. This is appropriate for predicting chrom-

inance pixels. Frequency response Hb(z) of this prediction is 

given by Hb(z) = 1 – z -3. If a term (1 – 0.5z -1) is added to improve 

luminance prediction8), the response results in  Eq.(1). 

Hc(z) =  (1 - 0.5z -1) (1 – z -3)           (1)  

For reference, let us add Ha(z), a frequency response for 

previous sample prediction. It is described as Ha(z) = 1 – z -1.   

Fig.3  Waveform examples of two Color TV formats 

Fig.4  Color phase inversion between two successive lines 

These three responses are compared in Fig. 5, where the 

vertical axis corresponds to amplitude and the horizontal one to 

normalized frequency (f / fs). In addition to the results at f / fs=0, 

responses for Hb(z)  and Hc(z)  are also zero at f / fs=1/3, i.e., zero 

at f = fsc, while not for Ha(z). When Hc(z) is compared with Hb(z)  

between  0  and  2  in the normalized frequency, it shows 

apparently smaller amplitude values than Hb(z). That is, Hc(z) is 

much better, and therefore it is used as a basis in HO-DPCM 

45A series codecs. 

Sampling frequency selection 

For many years, a sampling frequency for composite TV 

signals was usually bound by the subcarrier frequency, such as 

multiple integer times fsc, typically 3×fsc or 4×fsc in NTSC. 

Both meet the Nyquist rate which is defined as twice the signal 

frequency bandwidth. There are applications such as CATV 

which may not necessarily require highest quality. If a lower 

sampling frequency is allowed, data amount reduction becomes 

much easier and it helps produce inexpensive codecs, while 

coded video quality should be maintained at an acceptable level.  

As an example, let us choose  fs to be 2×fsc, i.e., 7.2 MHz. 

It is a little bit lower than the Nyquist rate and therefore called 

sub-Nyquist rate sampling. In this case, it is very important to 

avoid or suppress fold-over effect, a kind of interference, 

between luminance and chrominance. In addition to the 

frequency-interleave sampling, a comb filter is applied to 

suppress luminance existing in high frequency region dominated 

by chrominance. The sub-Nyquist sampling was deployed in 

HO-DPCM 32A in 1975 for 32 Mbit/sec transmission9). 

Frequency response H (z) in this case is given by Eq.(2). 

H (z) =  (1 - 0.5z -1) (1 – z -2)    (2) 

It is very flexible if the sampling frequency can be chosen 

freely or with less constraint. Generalization or relaxation of  

constraint on the sampling frequency selection was also 

studied10).  Using a parameter “α”, let us rewrite Hc(z) with a 

slight change and obtain Hd(z) defined by the following equation,  

  Fig.5  Frequency response of Higher-Order DPCM 

(b) TDM Color TV Signal

(a) NTSC Color TV Signal

a 
b 

c 

d X 

Ci 

Ci+1 

Yi+1 

Yi 
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Hd(z) = (1- 0.5 z -1) (1- z -1) (1+ (1 + α) z -1 + z -2) .  

What is most important in the third term of Hd(z) is to find 

relation between α and a sampling frequency fs on the condition 

that the frequency response is zero at f = fsc.  

Consequently, a simple relation is obtained as follows.  

1 +  α + 2 cos( 2π fsc / fs) = 0,  

therefore,  fs = 2π fsc / cos-1  ( - (1 + α ) / 2 ) .  

As an example, let us choose fs to be 8.8 MHz. An appropriate 

value of α is calculated to be 0.65896. If it is approximated to be 

0.65625, it is expressed by (1/2 + 1/8 + 1/32), quite suitable for 

binary implementation.  

This somewhat generalized sampling frequency of 8.8 MHz 

was deployed in HODPCM-45B in 1985, designed for industrial 

use at 45 Mbit/sec.  

(2) Composite interframe prediction with reversible Y/C
separation

In the early 1970s, it was not clearly known whether 

interframe prediction could realize transmission of high quality 

composite color TV signals such as NTSC. It was mainly 

because separation of luminance (Y) and chrominance(C) is 

likely to degrade color quality, and it may be perceptible after 

their synthesis back to NTSC. To cope with the difficulty, we 

proposed an idea that linear (reversible) transform is applied for 

color phase adjustment before interframe prediction11). Color 

subcarrier phase is alternately inverted line by line as shown in 

Fig. 4. The same is true between two successive frames since 

there are 525 lines in a frame. That’s why the subcarrier phase 

should further be taken into account in interframe prediction.  

As an example, a pair of lines in NTSC in Fig. 3(a), L2m and 

L2m+1, are applied to the following equation Eq.(3) to produce 

another pair of lines, Ym and Cm, each corresponding to 

luminance and color, respectively. The equation is a kind of 

Orthogonal Transform (OTF) and equivalent to Hadamard 

Transform of the 2nd order.  

൤
𝑌௠

𝐶௠
൨  =  

ଵ

 ଶ
 ൤

1 1
(−1)௡ −(−1)௡൨·൤

𝐿ଶ௠

𝐿ଶ௠ାଵ
൨    (3) 

A term (-1)n is applied so that subcarrier phase is inverted every 

Fig.6  NETEC-22H    Fig.7  NTC Best Paper Award  

other frame for phase adjustment between frames, where ‘n’ can 

be a frame number or any appropriate serial integer number. 

Once the subcarrier phase is adjusted between frames, inter-

frame prediction can be applied.    

At Decoder, subcarrier phase restoration is made using the 

following Eq.(4) to reproduce NTSC signal after interframe 

decoding. The term (-1) n is applied so that subcarrier phase is 

inverted every other frame and then the initial phase relation at 

Encoder is restored. 

൤
𝐿ଶ௠

𝐿ଶ௠ାଵ
൨  =  ൤

1 (−1)௡

1 −(−1)௡൨·൤
𝑌௠

𝐶௠
൨    (4) 

With this adjustment, interframe prediction can be applied.  

Intraframe prediction was applied to interframe difference to 

cope with abrupt changes likely to occur between frames. This 

is called Combinational Difference prediction. Third-order 

prediction (z -3) can be used as intraframe prediction when the 

sampling frequency is 3×fsc. When data amount increases 

abruptly, sub-Nyquist sampling mode (2×fsc) is evoked to 

suppress the increase and corresponding Higher-Order 

intraframe prediction ( 0.5z -1 + z -2 - 0.5 z -3 ) is used without 

interframe prediction. 

 This algorithm was implemented in NETEC-22H(prototype). 

Its Encoder (left) and Decoder (right) are shown in Fig. 6. A 

paper on NETEC-22H was presented at IEEE National Tele-

communications Conference (currently, GLOBECOM) in 1976 

to show effectiveness of digital transmission of high quality 

broadcast TV signals11). Fortunately, “1976 NTC Best Paper 

Award” was given to this presentation as shown in Fig.7.  

2.2.2 Component interframe coding for wide applications 

Economical transmission is more important in many app-

lications than highest quality as required in TV broadcasting. 

Component coding can be a better solution, since it allows many 

more techniques for improvement than composite one, and 

lower rate transmission as well. 

(1) Video format conversion to Line-sequential TDM signal

NTSC Color TV format exemplified in Fig. 3 (a) is converted

to another one in which luminance (Y) and two color compo-

nents (R-Y, B-Y) are separated at first and then rearranged in 

time slots as shown in Fig. 3 (b). In this example, the two color 

components (R-Y, B-Y) are subsampled, and each component 

after grouping is placed alternately line-by-line in Horizontal 

Sync parts. Then, interframe coding can be applied as if input 

signals were  black-and-white.  

This digital format is named Line-sequential Time Division 

Multiplexed (TDM) Color signal12). An active frame of this 

TDM signal consists of 480 lines/frame and 510 pixels/line. 

Each line includes 6 (sync) + 84 (C1/C2) + 420 (Y) in pixels. 
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Color components C1 and C2 correspond to (R-Y) and (B-Y), 

respectively, and they are 5-to-1 subsampled. 

(2) Implementation of interframe codec for TDM signal 

When NEC started R&D on interframe coding in 1971, our 

target was transmission of 1-MHz black-and-white videophone 

signals at 1.5 Mbit/sec. Soon, the target was raised to trans-

mission of 4-MHz Color TV signal at 6.3 Mbit/sec. NETEC-

6/16 was developed in 1974 based on interframe prediction 

applied to the TDM Color signal13). It was the first practical 

interframe codec ever developed in the world. Our R&D efforts 

for further improvement continued since then.   

2.3 Adaptive prediction 

Any adaptive prediction makes use of more than one 

prediction functions, expecting improvement. There are three 

kinds of correlation in video signals, i.e., horizontal, vertical, and 

temp-oral. When these three are appropriately used in 

combination, it will result in higher coding efficiency.  

The first adaptive algorithm proposed by R. E. Graham in 1958 

was based only on intraframe prediction, using previous sample  

(horizontal) and previous line prediction (vertical) 14). That is, 

Graham’s algorithm is an adaptive prediction in spatial domain. 

In the 1970s, an interframe coding algorithm was proposed by J. 

C. Candy et al. 15) , and its improvement was  carried out in many 

places over the world 1). Essence of interframe prediction lies in 

the third correlation, i.e., temporal one. Adaptive algorithms 

combining spatial and temporal correlation had been also very 

important research items. We have studied the adaptive 

algorithms intensively since then, particularly in the1980s.  

2.3.1 Pixel-based adaptation  

A basic pixel-based adaptation scheme without selection 

information transmission is depicted in Fig. 8. Here, two 

prediction functions, P1 and P2, are assumed and one of the two 

estimated to be better is selected for prediction at the next sample 

time. What can be used in the estimation is everything, so long 

as it is available both at Encoder and Decoder, i.e., P1(i), P2(i), 

xො (i), and  eො(i)  in Fig. 8. This is essential, because selection 

information need to be transmitted unless otherwise. What is 

also important in this scheme is that the actual selection is done 

at least one sample time later than the estimation. Therefore, a 

sample memory or delay “D”  is quite essential for this purpose.  

Two types of adaptive prediction are possible in this scheme, 

i.e., Type I using solely eො(i), while Type II using P1(i), P2(i), and 

xො(i). Here, let us assume P1(i) and P2(i) represent prediction 

values for P1 and P2 at a time (i), respectively. P(i) is an output 

value of the selected prediction. Selection at SW is carried out in 

obedience to the estimation result J(i-1). 

 
  Fig.8  Basic scheme for Pixel-based Adaptive Prediction 

Type I: Comparison with threshold value 

Only quantized prediction error eො(i) is used. Let us assume that 

P1(i) is selected at a sample time (i). If Abs[eො(i)] ≤ Th, then 

P(i+1) = P1(i+1), else P(i+1) = P2(i+1). The “Th” value, fixed 

or variable, should be identical in both Encoder and Decoder at 

any instance. If “Th” is variable, an appropriate algorithm is 

necessary to find its optimum or sub-optimum value, which  

should work always in synchronization on both sides.  

Type II :  Comparison of difference values 

Two prediction values given by P1(i) and P2(i) plus locally 

decoded sample xො(i) are used, where xො(i) = P(i) + eො(i). 

 Better prediction is estimated by the following comparison.  

If Abs[P1(i) – xො(i)] ≤ Abs[P2(i) – xො(i)], then P(i+1) = P1(i+1), 

else P(i+1) = P2(i+1) . Here, Abs[•]means an absolute value. 

Let us call this type “Two-diff” in what follows, since two 

difference values are compared for the estimation. The number 

of prediction functions can be extended to more than two. 

A theoretical analysis was made on Type I adaptive algorithm 

in terms of prediction error entropy, based on a mathematical 

model that both intraframe and interframe prediction error 

signals can be represented by the Exponential Distribution. 

According to the analysis, Type I is shown to be as effective as 

interframe prediction for pictures moving at a speed of 1 

pixel/frame or lower. At faster speeds than 1 pixel/frame, Type I 

is as good as intraframe prediction. Therefore, Type I is more 

efficient than Combinational Difference prediction. This is 

confirmed theoretically as well  as experimentally 16).   

Change in prediction function in Type I takes place when the 

prediction error value exceeds “Th”, regardless of which 

prediction was used at the time. That is, exceeding “Th” shows 

that the prediction did not work well but it does not necessarily 

mean the other was better. As for Type II, two difference values 

are compared, one for P1 and the other for P2. When either 

difference value is smaller, its corresponding prediction is likely 
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to be relevant. The relevance information in the coded pixel parts 

in two dimensions helps improve coding efficiency, since spatial 

correlation can be used. As a whole, Type II can be preferred for 

its algorithmic simplicity as well as for performance stability.  

(1) Composite intraframe coding

Combining predictions based on horizontal and vertical 

correlation can be a good basis for adaptative algorithms in 

intraframe coding. In addition, Type II adaptation was adopted 

in our composite intraframe coding algorithms.  

Here, let us define the basic prediction, Higher-Order DPCM 

(HO-DPCM), as (0.5z -1+z -3 - 0.5z -4) in the case of  fs=3×fsc. Its 

frequency response is denoted by Hc(z) and shown in Fig. 5. In 

“Two-diff” for composite coding, HO-DPCM can be used as P1 

and z -2H as P2. The latter is two-previous line prediction in which 

the color subcarrier phase is identical (see Table 1). 

If we assume that vertical distance is “two lines” in the two-

previous line prediction, then the distance in interfield predict-

ion (z -262H) is a quarter of two lines, i.e., “a half line.” In general, 

the smaller the distance, the higher the correlation, resulting in 

better prediction, so long as the subcarrier phase is identical 

between lines of  interest. Therefore, it is expected that  interfield 

prediction (z -262H) can improve coding efficiency. After 

confirming that interfield prediction improves efficiency by 4 ~ 

5 %, it was added to the “Two-diff”, resulting in “Three-diff”. It 

was implemented as P3 in HO-DPCM 45A in 1982 17). “Four-

diff” is an improved algorithm for “Three-diff,” i.e., previous 

sample prediction (z -1) is further added as P4 so that it can show 

excellent performance even when black-and-white signals are 

included in input signals. It was implemented in Broadcaster 45 

in 1992 for use at DS-3 rate in U.S., and also in Broadcaster 52 

in 1993 for use at 52 Mbit/sec in Synchronous Digital Hierarchy 

networks. It is also possible to include two-previous frame 

prediction18) for the highest coding efficiency in still background 

parts since the subcarrier phase is identical. However, it may 

better be classified in interframe prediction. Type II adaptive 

prediction algorithms based on HO-DPCM are summarized in 

Table 1, in which HO-DPCM CODECs are shown at the bottom.  

Table 1  HO-DPCM-based Adaptive Prediction  

Scheme Fixed Two-diff Three-diff Four-diff 

P1 HO-DPCM HO-DPCM HO-DPCM HO-DPCM 

P2  - z -2H z -2H z -2H 

P3  - - z -262H z -262H 

P4  - -  - z -1 

CODEC Expr (‘73) Proto (‘80) 
45A (‘82) ~ 
45AIII (‘88) 

B-45  (‘92) 
B-52  (‘93) 

(2) Composite interframe coding

The prototype composite interframe codec was based on

Combinational Difference prediction. However, it was theoret-

ically clarified that an adaptive prediction based on Type I is 

more effective than that for a broad range of “Th” values16). 

Therefore, Type I was implemented with a preselected fixed 

value for “Th” in NETEC-22H (Product) with other functions 

unchanged from the prototype.  

(3) Component interframe coding

Our first interframe codec, NETEC-6/16, was based on

simple interframe prediction for TDM color signals. To 

improve coding efficiency, Type I was compared with “Two-

diff” in Type II, in which P1 was interframe and P2 previous 

sample prediction. As a result, “Two-diff” in Type II had been 

employed in NETEC-series products until Recommendation 

H.320/H.261 was issued.  

2.3.2 Block-based adaptation in component coding 

In addition to pixel-based adaptation, we can also mention 

block-based one. Block-matching type motion  compensation is 

the most typical candidate.  

(1) Block-based motion compensation (MC)

Motion compensation (MC) has long been expected for 

higher performance in video coding 2). MC can be realized in 

two ways, i.e., pixel-basis or block-basis. Both methods had 

been studied in many places worldwide in the 1970s through 

1980s. However, to the author’s best knowledge, nothing but 

block-based MC has been implemented so far in practice.  

Block Matching Algorithm (BMA) is the most typical block-

based method and a kind of pattern matching between two 2-

dimensional blocks.  A block (Block A) in the current frame is 

compared with a block (Block Bk) which is displaced by a 

candidate vector (𝑉ሬ⃗ ௞). The comparison is repeated with respect 
to many candidate vectors within an  MC search range in the 

previous frame. A parameter SUM (𝑉ሬ⃗ ௞) is defined by Eq.(5) as 
a measure of similarity between Block A and Block Bk. C[a(i,j) 

– bk(i,j)] in Eq.(5) is a cost function for the difference, where a(i,

j) is a pixel in Block A and bk(i, j) in Block Bk, respectively.

Assuming that (e) is the difference, C[e] outputs either one of

Abs[e], e^2, word-length of a VLC for (e), etc. Let us also

assume here that each block consists of M lines × N pixels.

SUM൫𝑉ሬ⃗ ௞൯ = ෍

୑ିଵ

୧ୀ଴

෍ C[a(i, j) − b௞(i, j)]    (5)

୒ିଵ

୨ୀ଴

 

The smaller the SUM value, the higher the similarity. The 

relative position or displacement showing the highest similarity 

is chosen as a motion vector (𝑉ሬ⃗ opt). BMA has been shown to be 
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very effective so that it can reduce information amount 

approximately to 1/2 - 1/3 for videoconference signals19).  

(2) Pixel-based enhancement to MC prediction 

    MC does not necessarily work well when temporal correlation 

is poor, e.g., large objects  moving very rapidly or beyond MC 

range as well as scene change in the worst case. To cope with 

this difficulty, spatial correlation also helps. “Two-diff” type 

prediction combining previous sample prediction (z -1) and MC 

prediction (z -MC) is still helpful. However, there is room for 

improvement. “Two-diff” type requires simple comparison of 

two difference values to estimate better prediction. Instead of the 

comparison, a kind of look-up table can play a similar role. The 

table consists of logical calculation results for several past 

sample points in two dimensions, which are obtained from 

statistics on many videoconference signals. That is, the table 

outputs an estimation result taking spatial correlation into 

account. It was implemented in NETEC-X1MC in 1983 20).  

(3) MC combined with DCT 

  As far as BMA is used, it is natural to combine MC and 2D-

DCT, since the latter is also block-based. It was shown by N. 

Ahmed et al. (Univ. of Texas) that 2D-DCT is a very effective 

tool in image coding21). It is more efficient than spatial prediction 

such as previous sample and/or previous line prediction. When 

MC does not work well, 2D-DCT is expected to help MC 

instead of spatial prediction. On the contrary, when MC does, it 

may not be necessary but does not degrade efficiency, either. 

Consequently, they can be combined in a fixed manner. This 

combination was first implemented in VL-3000 codec in 1989.  

2.4 Entropy coding 

  When NETEC-6/16 was developed in 1974, prediction error 

was almost all the information to be transmitted and represented 

by two groups of fixed-length code sets, short (FLC1) and long 

(FLC2). It may look far from entropy coding, but practical 

implementation of variable-length code set (VLC) was not 

possible at the time, mainly because of insufficient ability  of 

hardware, particularly in memory capacity of Programmable 

ROMs.   

2.4.1 Code conversion of prediction error information 

In general, there are two types of quantization characteristics, 

mid-riser usually used in intraframe and mid-tread in interframe 

prediction. There is no zero output in the mid-riser type, while 

very small prediction error is suppressed to zero in the mid-tread 

type. Effective representation of the quantized error information 

is quite important and executed by Entropy Coding.  

(1) VLC for intraframe prediction error    

An  experimental  HO-DPCM  encoder  was  developed  in 

197622), equipped with 22-level mid-riser type nonlinear 

quantization characteristics. Its VLC set consists of codewords, 

each being 2, 3, 5, 6, 8, and 9 bits including a sign bit.  

According to a study on appropriate maximum length of VLC 

codewords, it was clarified that average code lengths were 

almost equal to theoretical entropy values, when the maximum 

length was about 14 or 15 bits17). This study shows that an 

optimum VLC code set can be designed with a maximum code 

length of 15 bits. The result was reflected in successors such as 

HO-DPCM 45AII and thereafter.  

(2) Adaptive VLC for interframe prediction error 

  Interframe difference is usually very small in background parts. 

Therefore, there are many zeros appearing when the mid-tread 

type quantization is applied. Effective representation of the zero 

information is quite important.  

Representation of zero prediction error 

  Basically, there are two representation methods for this purpose, 

one being block-based and the other pixel-based.  

If a block includes non-zero pixelwise quantized error, the 

block is classified as significant. Positions of the significant 

blocks can be easily represented in many ways. The pixelwise 

quantized error, zero or non-zero, in the significant blocks is 

coded with VLC or FLC. A sequence of zeros is called a run in 

pixel-based representation. The run can be very long so that it 

covers a whole horizontal line. The most popular Run-length 

Coding (RLC) method is Modified Huffman (MH) which is an 

international standard for Facsimile image coding. In the MH 

scheme, a multiple of 64 zeros is expressed with a Make-up 

(MK) code (j) and a run shorter  than 64 is with a Terminating 

code (Y). Any run-length  (R) can be expressed as follows.   

    R = 64 × j + Y + 1    ( 63 ≥ Y ≥  0 ) 

Adaptive conversion of non-zero prediction error 

As for non-zero error, it is beneficial to avoid successive 

appearance of long VLC codewords. An adaptive conversion by 

a switching scheme between VLC(V0~V28) and FLC(F0~F28) 

is introduced. If a VLC codeword selected exceeds a specified 

length, then FLC is used at the next sample time. On the contrary, 

if an FLC one selected corresponds to a VLC one shorter than 

the specified length, then switched to VLC at the next sample 

time. This is shown in the upper half of Fig.9. A combination of 

significant/insignificant block addressing and this adaptive 

VLC/FLC code conversion in the significant blocks was imple-

mented in several NETEC CODECs.  

Adaptive transition among FLC, VLC, and RLC 

Furthermore, it may be better to incorporate RLC with the 

adaptive VLC/FLC switching scheme. If a VLC codeword (V0) 

for zero is found, transition to RLC takes place. If End-of-Run is  
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  Fig.9  Transition among VLC, FLC, and RLC 

found, transition back to VLC. This transition scheme among 

VLC, FLC, and RLC is shown in Fig. 9. It was implemented in 

NETEC-X1MC23). 

2.4.2 VLC for DCT coefficients 24) 

Usually, there are many zero coefficients in high frequency 

parts after 2D-DCT is applied to video signals. Therefore, 

coding for zero coefficient runs is quite effective when diagonal 

zigzag scanning is applied, in which every coefficient is scanned 

from DC coefficient (upper-left corner) to the end (lower-right) 

across the diagonal axis in every block. Information amount for 

nonzero coefficients is the same regardless of scanning methods. 

The following four methods were compared in designing VLC 

code set.  

(1) Basic Method (Reference)

Diagonal zigzag scanning is applied to all the coefficients

within a block. Run-length coding is used for successive zero 

coefficients, while VLC for nonzero ones.  

(2) Zone coding

"Zone" is a minimum rectangle including DC coefficient

and all nonzero coefficients. There are 64 kinds of zone shape  

with a minimum size of 1 × 1 while a maximum size of 8 × 8. 

Zigzag scanning is assumed within this zone. Zone shape 

information must be transmitted. 

(3) Scan Length coding

Scan Length is the number of coefficients from the begin-

ning to the last nonzero coefficient and is used to indicate that 

the encoding has finished for the block. This is transmitted 

instead of the last zero run. 

(4) End of Block coding

EOB (end of block) code is added immediately after the last

nonzero coefficients to indicate that encoding is finished in the 

block. This is transmitted instead of the last zero run.  

With respect to entropy values for the four methods above, 

Zone Coding shows the highest efficiency, although difference 

among them is small. Therefore, End of Block (EOB) coding is 

preferred since it is very simple and easy to implement.  It was 

implemented in VisuaLink-3000 and included later in H.261 

Specification.  

2.4.3 VLC for motion vector information 24) 

  Basically, motion vector is two-dimensional and represented 

by two parameters, Vx (pels/frame) in horizontal and Vy (lines/ 

frame) in vertical direction, respectively. When MC range 

covers an area in ± H samples and ± V lines, the number of 

motion vectors in the range is given by (2H + 1) × (2V + 1), e.g., 

225 for H = V = 7. In a two-dimensional expression (2D), a 

single codeword is assigned to a combination of Vx and Vy , 

resulting in 225 codewords needed to specify a motion vector 

within this range. For the sake of simplicity, two kinds of 

approximation can be mentioned using one-dimensional 

expressions. In the first one-dimensional expression (1D-A), two 

independent code sets are prepared, one for Vx and the other for 

Vy, respectively. The former code set is designed from the 

statistics of Vx and the latter from that of Vy. Each code set 

consists of 15 codewords in this example. In the second one-

dimensional expression (1D-B), the two components Vx and Vy 

are put together to produce a combined distribution irrespective 

of directions. Then, a single code set consisting of 15 codewords 

is derived from the distribution and used in common for 

encoding both Vx and Vy.  

There are two choices in coding motion vector information 

i.e., coding is applied directly to vectors or to differential ones 

between two adjacent blocks. In practice, there is very little 

difference between the two choices for video signals with 

normal motion. However, considerable improvement can be 

expected of difference vectors when translational motion covers 

many blocks or camera is panned.  

  All the three VLC methods above were implemented for 

motion vectors in practice, although applied to difference vectors. 

That is, (2D) was deployed in NETEC-X1MC23) while (1D-A) 

in VisuaLink -3000 (VL-3000). (1D-B) was adopted in H.26125) 

and also implemented in VL-5000 26).  
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Corporate Efforts for R&D on Video Coding and Its Practical Implementation (Part–2) 

: Standardization Activities and Practical Contributions to Video Coding World 

Toshio KOGA (Fellow) †  

† NEC Corporation (1971 - 2000) and Yamagata University (2000 - 2012) 

<Summary>   Digital video signal processing for varieties of purposes including storage as well as transmission is currently playing a very important role 

in our daily life. NEC Corporation has been actively doing R&D on video coding since its dawn and incessantly making every effort for implementation of 

practical codecs, terminals, and systems. They include Delta Modulation for digitization, HO-DPCM for high quality TV transmission, and interframe coding 

for a broad spectrum of audiovisual services. The author believes it is quite beneficial to introduce a combined history of coding algorithm improvements and 

practical codecs based on them, since they will provide the overview of the technical history from theoretical and also practical aspects, and definitely there is 

no such review published so far. This survey paper consists of two parts and reviews the corporate R&D efforts with respect to video coding algorithm 

improvements and our contribution to progress in digital TV/video transmission services over the world for three decades since the mid-1960s. Part -1 (Chapter 

1and 2) mainly handles continued improvement of Delta Modulation and coding algorithms on intraframe and interframe prediction as well as entropy coding. 

Part -2 (from Chapter 3 to 6) mainly shows effectiveness and significance of video coding through various application examples of codecs/terminals as well 

as standardization activities in which we were deeply involved. In addition, Part-2 includes a brief history of NEC’s CODECs in conjunction with continued 

algorithm improvements and several examples of practical use in businesses. 

Keywords: video coding, NTSC signal, TDM signal, adaptive prediction, motion compensation, entropy coding, H.120/Part 3, H.320/H.261, 

interoperability test 

3. Pioneering Experiences to Verify and Enhance
Effectiveness of Video Coding

We had quite valuable experiences since the development of 

NETEC-6/16, which is our first codec, in 1974. They include 

local live demonstration, real-time video transmission through 

existing radio networks, and transmission by various flexible 

ways including terrestrial and satellite channels. Furthermore, 

we contributed to realization of real-time Motion Compensation.  

3.1 Algorithm implementation using premature ICs 

It was in 1966 that SN7400, a 14-pin discrete IC package with 

2-input Quad NAND gates, was commercially available from 

Texas Instruments for the first time in the world. 

Eight years later, NETEC-6/16 was developed. It was 

designed to encode TDM Color TV signal consisting of 480 

lines by 510 pixels/line in a frame, approximately amounting to 

2Mbits. Surprisingly, about 2,000 DRAM packages were 

needed for a single frame memory, since memory capacity of a 

commercially available DRAM then was 1 kbit/package. In 

addition, about 2,000 discrete ICs such as 4-bit full adders, 4-bit 

registers, etc., were necessary for arithmetic and/or logical 

computation. Complexity of the NETEC-6/16 decoding 

algorithm was almost the same as its coding algorithm.  As a  

result, more than 8,000 IC packages were used in total.  

Every function needed was implemented in wired-logic 

hardware, resulting in a huge codec set as shown in Fig. 10. Both 

Encoder and Decoder are about 2 m high. Two frame memories, 

each being about 1 m high, are not equipped inside but standing 

next to Encoder and Decoder, respectively.  

3.2  Live demonstration of interframe-coded video 

  Soon after the development of NETEC-6/16, an international 

conference on digital satellite communications (DIGISAT) was 

held in 1975 in Kyoto, Japan13). The codec set was transported 

to the conference site, since it was a good opportunity to show 

how much coded video transmission is promising. Video signals 

taken by TV camera operated on the site were encoded, 

transmitted back-to-back, and decoded on the spot. Satellite 

engineers were strongly impressed by possibility of the coded  

Fig.10  NETEC-6/16    Fig.11  Outstanding Paper Award 
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video transmission, i.e., remarkable effectiveness of bandwidth 

reduction in satellite channels. It was the first live exhibition of 

interframe-coded video in the world. The impact by the paper 

presentation as well as the exhibition on the conference site may 

have contributed to our reception of “Outstanding Paper Award” 

shown in Fig. 11.  

3.3  Coded video transmission  

 Our codecs were provided with flexible transmission 

capability such as straightforward, inverse-multiplexed, and 

multiplexed, taking into considerations customers’ network 

facilities available.  

3.3.1 Transmission through existing radio networks 

    A long distance transmission experiment was conducted in 

197627) jointly by National Police Agency Japan (NPA) and 

NEC. Coded video was sent from Osaka to Tokyo, 550 km 

distant, using NETEC-6/16. Encoder was placed at a commun-

ication facility in NPA Osaka District building, while Decoder 

in Tokyo, since there was only a single NETEC-6/16 codec set 

available. Coded video was transmitted through NPA’s digital 

radio networks capable of transmission at 7.876 or 2 × 7.876 

Mbit/sec. In spite of a prototype codec, NETEC-6/16 was ready 

for the transmission, since fundamental functions were already 

equipped for communication such as digital network interface 

and Error Correction capability. That is, Double Error Correct-

ing BCH (239/255)  code was implemented. 

3.3.2 Transmission through multiple low speed lines 

   Even in the 1970s, digital networks were not flexible for public 

users in that there were few choices with respect to transmission 

speeds. PCM-24  or T1  line was widely used  in U.S. for  trans-

mission at 1.5 Mbit/sec. However, 3 or  6 Mbit/sec may be 

required for better video quality. It is convenient if these rates are 

realized in effect by combining several T1 channels. What is 

called Inverse MUX/DMUX is introduced for this purpose. In 

Inverse MUX at Encoder, coded information is divided into 

several streams, say, two or four, and each stream is assigned a 

single low speed channel (T1). In Inverse DMUX at Decoder, 

each stream from the two or four channels is once buffered and 

delay time difference is adjusted among the channels by frame 

  Fig.12  ABS-MUX/DMUX System Configuration 

aligners. And then, they are combined into a single stream to 

reproduce the initial stream  information. The Inverse MUX/ 

DMUX function was implemented in NETEC-628) and NETEC-

6/329). 

3.3.3 Simultaneous transmission of plural TV programs 
through a satellite30) 

(1) Adaptive bit-sharing (ABS) multiplexed transmission

An example is shown in Fig. 12 for multiplexing three

channels. ABS-MUX accepts buffer memory occupancy 

(BMO) values, BMO1 through BOM3, from the three encoders. 

Each BMO shows information amount being generated in each 

encoder and corresponds to request for a necessary transmission 

rate. DATA1 through DATA3 from each encoder are already 

partitioned into blocks and ABS-MUX assigns the number of 

blocks to be sent out from each encoder. CLOCK1 through 

CLOCK3 correspond to permission for sending the blocks. The 

number of blocks coming from each encoder is changing at any 

instance while the total number of blocks is always kept constant 

in the transmission line. The block size is chosen to be 64 bytes 

including Header information. This is quite close to Packet size 

defined in Asynchronous Transfer Mode of B-ISDN. This 

adaptive bit-sharing system is a good example of packet video 

transmission. Figure 13 shows an ABS-MUX/DMUX system 

at Los Angels Station (LA), operated by Western Union, a U.S. 

satellite communication company. Shown are, (from left to 

right), three Encoders, Satellite MODEM, ABS-MUX/DMUX, 

and two Decoders, i.e., three outgoing video channels are 

multiplexed, and two incoming channels are demultiplexed. The 

satellite transponder allows transmission at 60 Mbit/sec.  

(2) Effectiveness verification for ABS multiplexing31)

Assignment decision is made instantaneously by ABS-

MUX/DMUX corresponding to BMO values. The assignment 

was measured in real-time using commercial TV programs for 

two kinds of multiplexing, two- and three-channel cases, both 

with a total transmissin rate of 60 Mbit/sec.  

The assignment results in Fig. 14 show that effectiveness in the 

three-channel case is apparent where the probability of visible 

degradation such as 30 ~ 40 dB reduces to almost 1/10. The 

Fig.13  ABS System    Fig.14  Effectiveness 
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effectiveness is less visible with the two-channel case. It seems 

transmission at 30 Mbits/sec may not need multiplexing. 

3.4 Real-time motion vector detection  

Motion vector detection by BMA in real time requires 

prohibitively high volume of computation. Let us roughly 

calculate the amount for Full Search algorithm in which all 

candidate vectors are evaluated and compared. MC Range is 

assumed to cover ± SH pixels and ± SV lines, respectively. 

When a similarity measure SUM(𝑉ሬ⃗ ௞ ) defined in Eq.(5) is 
calculated, execution of {subtraction, C[e], summation} is 

necessary for every pixel in a block. If C[e] corresponds to an 

Instruction, three Instructions are carried out in the execution.  

The calculation for a SUM value needs 3×(M×N) Instructions. 

In case of Full search, it is repeated (2SH+1)×(2SV+1) times for 

all the candidate vectors in MC Range. Lastly, the number of 

comparison necessary to find minimum SUM(𝑉ሬ⃗ ௞ ) value is 
added, which is equal to (2SH+1)×(2SV+1). Total amount of 

calculation to be completed within a pixel time is given by the 

following calculation,  

3×{(2SH+1) × (2SV+1)}+{(2SH+1) × (2SV+1) } / (M×N).  

If we assume Block size (M×N) to be 8 lines × 8 pixels, and 

in addition, SH = SV = 8, then, the number of calculations in a 

pixel time amounts to 871.5 Instructions. If the sampling 

frequency is 8 MHz, it is equal to 6,972 Mega Instructions/sec, 

which presumably corresponds to computational power of a 

supercomputer  in  the 1970s.   If  the  MC  range  is  expanded,  

higher speed is required approximately in proportion to the 

expansion ratio. Change in the block size does not matter.  

3.4.1 Fast algorithm for motion vector detection19) 

A fast algorithm is mandatory to realize MC in a practical size 

using commercially available components. In general, 

difference between SUM(𝑉ሬ⃗ opt) and SUM(𝑉ሬ⃗ k) values decreases 
monotonously as the norm difference between the two vectors 

becomes smaller. This property suggests an algorithm which  

Fig.15  Three-Step Search 

looks for the smallest SUM value in several steps in a coarse-to-

fine manner. 

As shown in Fig. 15, nine candidate vectors are coarsely 

spaced with one of the vectors located at (0, 0) in the first step 

and compared one by one to find which vector gives the smallest 

SUM value. A vector located at (0, 0) is 𝑉ሬ⃗ 0, equivalent to 
interframe prediction. In this example, let us assume that a vector 

𝑉ሬ⃗ 1 in the north-east direction shows the smallest SUM in the first 
step. Then, another nine  vectors are less coarsely spaced, where 

𝑉ሬ⃗ 1 (=  𝑉ሬሬሬ⃗ 10) is included at the center and other eight vectors 
surround it. Eight corresponding SUM values are compared with 

SUM(𝑉ሬ⃗ 10) to find smaller SUM, if any. This is the second step. 

If a vector 𝑉ሬ⃗ 12 placed above 𝑉ሬ⃗ 10 is assumed to give the smallest 
SUM, then another nine vectors in its closest vicinity are placed 

in a similar manner to the previous step, and further compared to 

find the smallest SUM. A vector (𝑉ሬ⃗ 123) corresponding to the 

smallest SUM is chosen to be the motion vector (𝑉ሬ⃗ opt). This is 
the last step in the case of Three-Step Search. The number of 

calculations is reduced approximately to 25/169 in this example. 

Further multi-step search is also possible for higher accuracy.  

3.4.2 Hardware implementation 

Summation of Cost Function C[e] outputs is necessary to 

calculate SUM(𝑉ሬ⃗ k) in Eq. (5) and it may be normally carried out 
by using M×N Cost Function cards working in parallel. 

However, it is desirable that the hardware is as small as possible. 

The number of pixel points for C[e] calculation is reduced by 2-

to-1 subsampling the points vertically as well as horizontally, 

resulting in 4-to-1 reduction. Candidate Vector Generator is 

equipped to indicate and control the vector selection in each step 

after comparing SUM values for each 𝑉ሬ⃗ ௞. 

The implemented Vector Detector (H:25, W:55, D:20 in cm) 

is shown in Fig. 16, in which sixteen C [e] cards work in parallel 

for the MC block size of 8 by 8.  One of them is shown in Fig. 

17, which includes eight 1-kbit static RAMs (placed in two 

columns and each seen as a white-gray-white pattern). The static 

RAMs can provide an MC search range covering 17 pixels × 17 

lines in the case of  SH = SV = 8. 

Fig.16  Motion Vector Detector    Fig.17  C [e] Card 
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4. Contribution to Standardization Activities

4.1 Broadcast TV program transmission project in U.S.  

A project started in U.S. in 1987 by the Committee T1. Sub-

committeeT1Y1.1, later T1A1.1, was responsible for the project 

“Digital Encoding of System M-NTSC Television Signals for 

Broadcast Quality Transmission at the DS-3 Rate.”    

Many companies such as ABL, Grass Valley Group, NEC, 

Northern Telecom Inc., and Telettra took part in this project.  

NEC provided HO-DPCM 45 and its successors for video 

coding algorithm comparison as well as for video quality 

evaluation during 1987 through 1991.    

However, this activity faded out, when it was widely recog-

nized that MPEG-2 would come up soon.   

4.2 H.120/Part-3 for audiovisual services at 1.5 Mbit/sec 

In 1983, a Working Party in CCITT SG-XV started to create 

a common video coding algorithm H.120/Part-3 for trans-

mission of video conference signals at a primary rate (1.5 

Mbit/sec) in NTSC countries. PAL/SECAM countries selected 

separately another algorithm H.120/Part-1. 

H.120/Part-3 is basically interframe prediction adaptively 

combined with intraframe one. However, the interframe part 

consists of two types, one for MC and the other for Background 

prediction. The latter was proposed by H. Kuroda et al., (NTT, 

Japan)32), since MC does not work in uncovered background 

parts. That is, H.120/Part-3 is an adaptive algorithm among three 

prediction functions, selected on a pixel-by-pixel basis. As for its 

entropy coding, NETEC-X1MC is fully referenced. Therefore, 

H.120/Part-3 can be regarded as equivalent to the specification 

of  NETEC-X1MC with back-ground prediction capability.  

Recommendation H.120/Part-3 was officially issued by 

CCITT in 1988. However, as a matter of fact, it didn’t come to 

common use due to significant delay against its initial schedule 

and, in addition, expectation for H.261 to come up soon.  

4.3 H.320/H.261 for audiovisual services in ISDN 

     H.261 is a block-based video coding algorithm consisting of 

MC interframe prediction, DCT, quantization, and entropy 

coding33). A prototype H.261 codec (H:210, W:56, D:61 in cm) 

was developed in 198834) to verify video coding performance. It 

was called “Flexible Hardware” or “n×384 codec” shown in Fig. 

18. A prototype H.320/H.261 terminal (H:75, W:56, D:61 in cm)

was developed in 1989 for overall function verification. It was

called “p×64” and is shown in Fig. 19.

 “Flexible Hardware” was implemented with many printed 

circuit boards, each consisting of discrete ICs and other circuit 

components. DCT/IDCT circuit boards were also made in the 

same manner. Therefore, we could directly touch almost any 

Fig.18  Flexible Hardware      Fig.19  p×64 Terminal 

pins of ICs and circuit components. When we intentionally let a 

part of DCT/IDCT circuit in Encoder or IDCT in Decoder short-

circuited to the ground in a moment, mismatch in DCT/IDCT 

calculation takes place between Encoder and Decoder. This 

unusual experiment reminded us of a possible DCT/IDCT 

mismatch problem, if H.320/H.261 terminals are produced by 

different manufacturers without any common specification35). It 

contributed to find a practical solution, i.e., DCT/IDCT accuracy 

specification within a certain tolerance in combination with 

cyclic refresh by Intra DCT mode.   

4.4 Interoperability tests for H.320/H.261 terminals 

  When terminals based on H.320/H.261 are delivered to 

customers, every one of them should be able to talk to each other. 

Therefore, interoperability tests were planned inside Japan at 

first and then internationally. Promotion Conference of Harmon-

ization of Advanced Telecommunications Systems (HATS 

Conference Japan) supported by Ministry of Posts and Telecom-

munications (then), was responsible for proliferation of inter-

national telecommunication standards throughout Japan. Upon 

request by HATS, TTC (The Telecommunication Technology 

Committee, supported and organized by industries)   completed 

a guideline for the test in 199436).  The author was asked to chair 

HATS Digital Video Conference and Videophone WG 

responsible for the tests, including the guideline preparation.  

First round tests started in Japan in 1991 and the tests were 

carried out eight times in total until 1996. During these tests, 17 

vendors or organizations participated. After considerable 

experience in executing the tests, we started revision of the 

guideline and, in addition, preparation for international tests to 

come. Almost at the same time when it was completed, we 

planned a test with European countries. As a first international 

interoperability test, we had an opportunity to work with 

Belgium through a framework of EJIX (Europe-Japan ISDN 

Experiment Program). The first test was conducted in March 

1994 and the second in July 1994. The ratio of successful calls 
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in total was 70 % (56/80 calls). Later in 1995, another test was 

also conducted between European countries and Japan in a 

similar manner through a framework of EVE (European 

Videotelephony Experiment). It consists of six Telecom 

organizations from U.K., France, Sweden, Germany, Italy, and 

The Netherlands. PTT Telecom (The Netherlands) played a 

central role in European countries in that all the terminals in 

European side were prepared in its facility and the test was 

carried out successfully.  

Encouraged by these experiences, HATS thought it was 

appropriate to propose the test between U.S. and Japan. 

Representing HATS WG, the author proposed the test in July 

1994 to T1A1.1 meeting, a subcommittee of the Committee 

T137). The test was carried out on a voluntary basis with the 

participation of three U.S. and nine Japanese vendors in March 

1995. The number of calls placed in total was 54 in which 49 

calls were successful, i.e., success ratio was 90.7%. The author 

also reported the result in the T1A1.1 meeting in Aug. 1995 38).  

All the test results above were reported in an international 

conference and published in the conference proceedings39).  

5. Overview of NEC’s Video CODECs 

Throughout the three decades from the mid-1960s, NEC 

developed many codecs and terminals largely in three applic-

ation categories; broadcast quality TV transmission, high quality 

services in CCTV/CATV, and wide applications such as audio-

visual services. Those codecs/terminals were based on our 

proprietary algorithms, since our R&D started more than ten 

years before the dawn of international standardization activities. 

However, we also developed those conforming to recommend-

ations immediately when officially issued.  

5.1 Broadcast quality TV transmission use 

NETEC-22H was only one composite interframe codec 

developed for NTSC Color TV transmission with high quality. 

Several NETEC-22H codecs were used in satellite networks, 

where two or three Broadcast TV signals were adaptively 

multiplexed and transmitted through a satellite30). This system 

is exemplified in Figs. 12 and 13.  

HO-DPCM 45-series codecs were based on composite 

intraframe coding and paved way to digital terrestrial broad-

casting of NTSC Color TV. These codecs were delivered to one 

of three major TV broadcasting networks in US. and used in 

practice in a news program connecting New York and 

Washington DC. In addition, several HO-DPCM-series codecs 

and their successor Broadcaster 45 were provided to official 

evaluation tests for establishing digital TV program trans-

mission specification in U.S. conducted by T1Y1.1/T1A1.1. 

Later, Broadcaster-52 was developed in 1994 for operation at 52 

Mbit/sec with STM-0 line interface. It was equipped with 

lossless coding capability. Codecs based on HO-DPCM are 

summarized in Table 1. 

Other codecs conforming to standards for broadcasting were 

also developed. Broadcaster-34 is a compo-nent codec 

developed in 1983, conforming to  ITU-R 723 /ETSI (ETS 

300174), whose adaptive prediction consists of MC interframe, 

interfield, and intraframe prediction. It is used for PAL/NTSC 

transmission at 34 Mbit/sec. Broadcaster-140, developed in 

1989, is a codec without compression for NTSC/PAL/SECAM 

TV signals transmission. It conforms to ITU-R721.  

5.2 High quality CATV/CCTV use 

This application requires high quality but not so high as 

broadcast TV, while lower transmission rates and inexpensive 

codecs are favored. As a solution for these requirements, a lower 

sampling frequency is chosen and followed by a simple 

algorithm. HO-DPCM 32 is an experimental codec developed 

in 1975 for 32 Mbit/sec transmission, based on sub-Nyquist 

sampling and  higher-order prediction appropriate for fs = 2×fsc, 

i.e., 7.2 MHz9). Frequency response H (z) in this case is given by 

Eq. (2). Prediction error is quantized with 31-level characteristics 

and  code-converted with 5-bit FLC codewords9). By removing 

partially Horizontal Blanking intervals, video signals along with 

audio are transmitted at 32 Mbit/sec. HO-DPCM 45B, develop-

ed in 1985 for industrial use at 45 Mbit/sec, and its successors 

are based on higher order prediction for video signals sampled at 

8.8 MHz, a somewhat generalized frequency different from 

multiple integer times fsc. Prediction error is handled with FLC 

in a similar way to HO-DPCM 32A. 

5.3 Audiovisual communication use    

Based on our NETEC-6/16 development experience, many 

NETEC-series codecs were dev. eloped for applications such as 

videotelephone, audiovisual services, distance learning, etc. (see 

Table 2). NETEC-6 was the first commercial model and 

designed for use at 6 Mb/sec by incorporating four T1 lines in 

parallel28).This is Inverse Multiplexing/Demultiplexing in 3.3.2. 

The prediction algorithm is almost the same as that of NETEC-

6/16. NETEC-6/3 was developed for transmission at 6 or 3M 

bit/sec, using 16-kbit DRAMs for frame memories29). It is in 

effect the first commercial product in NETEC-series codecs. Its 

performance was evaluated by Bell Systems in U.S. for their 

video communication services. “Two-diff” type adaptive 

prediction was implemented in NETEC-X1 for the first time and 

was named so after its targeted transmission rate, i.e., a single T1 

line. 
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When MC was incorporated into NETEC-X1, it was renamed 

NETEC-X1MC20) 23). Its algorithm is “Two-diff” type adaptive 

prediction with MC. In addition, the motion vector detection 

method is improved here. In view of what is entropy-coded and 

transmitted in essence, it must be better to take into consideration 

an estimated amount of information on both motion vector and 

corresponding MC prediction error40). That is, what should be 

minimized is not a similarity measure SUM but SUM + C2[𝑉ሬ⃗ ௞], 

where C2 [𝑉ሬ⃗ ௞] is a cost function for 𝑉ሬ⃗ ௞. Minimum amount of 
information to be transmitted is preferred to  similarity.  

This change contributes to information amount reduction by 7 

~ 15 % on the average for normal videoconference signals and 

for signals with large moving objects as well as TV camera 

panning. NETEC-X1MC was introduced in a private satellite 

education network of a major IT company in U.S. in 1983. Its 

successor was developed in 1985 for transmission at Sub-T1 

(384 kbit/sec) through T1 (1.5 Mbit/sec)41). A simplified logical 

decision is introduced in the adaptation algorithm, instead of 

Look-up Table used in NETEC-X1MC. That is, intraframe 

prediction is selected only when intraframe  prediction  was  

judged to be better both at a previous pixel and a previous line 

position. Otherwise, interframe prediction is used.  

In addition, improvement was made in subsampling and 

freeze picture modes for lower rate operation. Quincunx 

subsampling is employed to reduce artifacts. Skipped pixels are 

reproduced by interpolation using four neighboring pixels, i.e., 

upper, lower, left, and right. Freeze picture may take place more 

often as transmission rates become lower. It seems better to  

resume  the normal  coding  process  gradually  upon  restart  to 

suppress frequent  repetition of freeze mode42).   For example, a 

block-line consisting of eight successive lines is coded in a frame 

immediately after restart. The number of coded block-lines 

increases frame by frame. Thus, the decoded video part becomes 

wider and wider, just like a window shutter being opened, 

though downwards.  

NETEC-series CODECs production came to an end when 

H.320/261 was officially recommended in 1989. During these 

days, VLSI technology made a great progress3). NEC developed 

Video/Image Signal Processor (VISP)43), a 16-bit fixed-point  

Table 2  Coding Algorithms in NEC Interframe CODECs  

  Prediction 

Fixed Prediction Adaptive Prediction 

Pixel-based (e) Pixel-based (e) 
Block-based Motion Compensation 

Pixel-based (e) Block-based (e) 

Fixed FF (1) Fixed FF (2) Adapt-FF (1) Adapt-FF (2) MC+Adapt-FF (3) MC + DCT 

Isolated Pel  Combinational Difference Threshold Two-diff MC Two-diff 
2D-DCT 

Removal  +  Non-linear Circuit ( Type II ) ( z - 1,  z - F ) ( z - 1,  z - MC ) 

  Entropy Coding 

(1) Prediction Error Information 

Prediction Error Amplitude DCT coeff 

 = 0 Block-based Pixel-based Block-based 

≠0 (FLC1, FLC2) VLC Adaptive (FLC, VLC) zig-zag+VLC 

(2) Motion Vector Information diff Vector diff Vector 

 = 0 RLC RLC 

≠0  VLC (2D)  VLC (1D) 

CODEC 
N-6/16 ('75) N-22H ('76) N-6/3 ('79) N-22H ('78) N-X1 ('81) N-X1MC ('83) VL-1000 ('89) 

N-6 ('77) N-XV ('85) VL-3000 ('89) 

( N:NETEC,  VL:VisuaLink ) VL-5000 ('93) 
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processor with Instruction Cycle time of 25 nsec. A single board 

processor VSP (Video Signal Processor) consists of six VISPs 

as shown in Fig. 20. Since we started to develop a new codec 

conforming to H.320/H.261 in parallel with the standardization 

process, it was impossible to implement it by wired-logic 

hardware as was usually done before. That is, software-based 

codec became a must in order to make it flexible to possible 

changes in the process of standardization. Then, a new software-

based codec was developed in 1989 using several VSP boards. 

It is VL-3000 (H:75, W:52, D:70 in cm), shown in Fig. 21. VL-

3000 was the first VisuaLink-series VSP-based codec. As an 

example of its system application, a satellite-based multipoint 

videoconference network was introduced by a major 

pharmaceutical company in Japan in 199144). An ASIC-based 

successor of VL-3000, named VL-5000026), was developed in 

1991 in a small box (H:22, W:42.5, D:45 in cm) with weight of 

25 kg. Reduction ratio is 1/6.5 in volume and 1/4 in weight 

compared with VL-3000. VL-5000 EX was made further 

smaller in 1994, resulting in 1/3 in volume and 1/2 in weight 

compared with VL-5000. This newest model was also used in 

the interoperability tests inside Japan and in international tests as 

well. The next and the last VL-series CODEC was VL-7000. 

However, it was based on MPEG-2 SP@ML algorithm.  

NETEC- and VisuaLink-series interframe CODECs above 

are briefly summarized in Table 2 with their individual video 

coding algorithms. “FF” is used here for “interframe”. 

Achievement Award was given to Hisashi Kaneko, Tatsuo 

Ishiguro, and Kazumoto Iinuma in 1986 for “R&D and Practical 

Implementation of Interframe Codecs for Television Signals,” 

by Institute of Electronics, Information, and Communications 

Engineers (IEICE, Japan).  

6. Conclusion 

This survey paper is to describe how intensively a private 

company has made efforts for R&D on video coding and their 

implementation in practice toward utilization worldwide. The 

author would like to emphasize that all the description here is  

                

Fig.20  VSP Board                      Fig.21  VL-3000 

based on nothing but facts without exaggeration, i.e., just what 

and how we did or experienced. He also expects the readers, 

young readers in particular, to understand or imagine how 

different or poor the R&D environment in several tens of years 

ago was.   

  In view of R&D environment during three decades from the 

mid-1960s, computer power at the time was not so adequate that 

simulation works should be highly effective or less time-

consuming. H.261 is very impressive in that the algorithm 

consists of a small number of “essential” or “very influential” 

parameters. It is a result from a common understanding, 

“Divergence and Convergence.” This attitude may have 

changed due to progress in semiconductor technology in the 

mid-90s. It seems, like in MPEG specifications, many 

parameters are included in the algorithms so long as they are 

advantageous, even if they require a considerable amount of 

computation. This is a significant change before MPEG and 

thereafter. Furthermore, a huge change can be seen in imple-

mentation, in that algorithms can be realized using only a single 

or several microprocessors, i.e., transition from wired logic to 

software.  

The Emmy (1990 - 1991) shown in Fig.22 was presented to 

NEC in 1991 by The National Academy of Television Arts and 

Sciences for “Pioneering Work and Implementation of Data 

Compression Techniques for Real-time Television Trans-

mission.”  This is one of the best proofs of our incessant efforts.  
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Report of MoU Ceremony between IEEE CTSoc and IIEEJ 
 

IEEE CTSoc and IIEEJ have exchanged the MoU on sister society relationship on Oct.29, 2024. The 

idea of establishing such relationship has started at GCCE 2022 held on October 2022. GCCE is one of 

the biggest conferences of CTSoc, which has been held in Japan, and several BoG members of IIEEJ have 

been working as Committee members of GCCE for long time. On October 2023, at GCCE2023, IEEE 

CTSoc President and IIEEJ President have reached to the basic agreement. Then, IIEEJ has approved the 

content of MoU in their BoG meeting held on May 2024, and CTSoc has approved the same content of 

MoU in the BoG meeting on September 2024.  

  The content of MoU includes mutual discount of membership fees, exchange of plans and schedules 

for international conferences and major events, and forming partnerships for the co-sponsorship of 

international technical meetings, if agreed. It is also encouraged to execute joint activities including active 

links on each society’s web site to the web site of the other, and reciprocal advertisements and address 

swapping for promotional purposes.  

Based on these approvals, the signing ceremony was held at Kokura, Japan, on Oct.29, 2024, from 

12:40 to 13:00, where GCCE2024 was held in parallel. To the ceremony, Prof. Wen-Chung Kao, President 

of CTSoc, and Prof. Naoki Kobayashi, past President of IIEEJ, attended representing each organization.  

  At the ceremony Prof. Naoki Kobayashi introduced the message from Prof. Seishi Takamura, current 

President of IIEEJ, as follows. “It is an honor to mark the beginning of a new chapter of cooperation. This 

partnership between our two esteemed societies will be a significant step in promoting technological 

innovation and its societal benefits. We look forward to leveraging each other's strengths and embarking 

on this journey together”.  

Prof. Wen-Chung Kao, President of CTSoc, announced his statement as follows: “It is our pleasure to 

have sister society relation between IIEEJ and IEEE CTSoc. We hope this partnership will further activate 

both societies and bring a lot of benefits to their members.” 

   The ceremony was witnessed by Ms. Charlotte Kobert, Adminisyrator of CTSoc, Prof. Yu-Cheng Fan, 

National Taipei University of Technology, and Prof. Fumitaka Ono, BoG member of CTSoc and former 

President of IIEEJ. The term of this agreement will be until December 2026, and the renewal is 

contingent upon approval by both societies. 

  The photos of the Signing Ceremony (Photo 1) and the attendants to the Ceremony (Photo 2) are 

shown below. 

 

  Concerning this agreement and its ceremony, both societies will express sincere thanks to Prof. 

Tomohiro Hase and Prof. Takako Nonaka for their continuing encouragements and assistances.    
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Photo1   The Signing Ceremony 

 

 

 

Photo 2 Attendants to the Ceremony 
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Call for Papers 

Special Issue on 

Image Electronics Technologies Related to AI 

IIEEJ Editorial Committee 

The rapid advancements in artificial intelligence (AI) technologies in recent years have profoundly 

accelerated and enhanced various image-electronics-related fields, including image and video 

processing, recognition, and generation. These technologies have vast potential applications, spanning 

autonomous driving, medical image diagnostics, facial recognition systems, anomaly detection in 

industrial settings, surveillance cameras, drones, and beyond. At the same time, addressing societal 

challenges arising from the misuse of these technologies—such as the generation of fake images—is 

expected to become a pressing issue. Nonetheless, it is evident that AI technologies will continue to 

grow in importance, playing an increasingly pivotal role in the field of image electronics technologies. 

This special issue invites a broad range of submissions focusing on research advancements in AI and 

their impact on image-electronics-related technologies, as well as evaluations of their practical 

applications. Accepted contributions may include research papers, system development papers, 

practice-oriented papers, and survey papers. 

1. Topics covered include but are not limited to 

・Application of AI in image processing (recognition, classification, generation) 

・Image recognition technologies using machine learning and deep learning 

・Improvements in video compression and transmission technologies using AI 

・Computer vision technologies using AI 

・Image generation and editing using generative AI 

・Fusion technologies between natural language processing and image processing 

・Application of AI in medical image processing 

・AI in automated driving 

・Application of AI in video analysis using surveillance cameras and drones  

2. Treatment of papers 

The submission paper style format and double-blind peer review process are the same as the 

regular paper. If the number of accepted papers is less than the minimum number for the special 

issue, the acceptance paper will be published as the regular contributed paper. We ask for your 

understanding and cooperation.  

3. Publication of Special Issue: 

IIEEJ Transactions on Image Electronics and Visual Computing Vol.14, No.1 (June 2026) 

4. Submission Deadline: 

Friday, October 31, 2025 

5. Contact details for Inquiries:  

IIEEJ Office E-mail: hensyu@iieej.org 

6. Online Submission URL:  http://www.editorialmanager.com/iieej/  
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Revised: January 6, 2017 

Revised: July 6, 2018 

Revised: Dec. 10, 2024 

Guidance for Paper Submission 
1. Submission of Papers

(1) Preparation before submission
・ The authors should download “Guidance for Paper Submission” and “Style Format” from the

“Academic Journals”, “English Journals” section of the Society website and prepare the paper
for submission.

・ Two versions of “Style Format” are available, TeX and MS Word. To reduce publishing costs
and effort, use of TeX version is recommended.

・ There are four categories of manuscripts as follows:
 Ordinary paper: It should be a scholarly thesis on a unique study, development or

investigation concerning image electronics engineering. This is an ordinary paper to
propose new ideas and will be evaluated for novelty, utility, reliability and
comprehensibility. As a general rule, the authors are requested to summarize a paper
within eight pages.

 Short paper: It is not yet a completed full paper, but instead a quick report of the partial
result obtained at the preliminary stage as well as the knowledge obtained from the said
result. As a general rule, the authors are requested to summarize a paper within four
pages.

 System development paper: It is a paper that is a combination of existing technology or it
has its own novelty in addition to the novelty and utility of an ordinary paper, and the
development results are superior to conventional methods or can be applied to other
systems and demonstrates new knowledge. As a general rule, the authors are requested
to summarize a paper within eight pages.

 Data Paper: A summary of data obtained in the process of a survey, product development,
test, application, and so on, which are the beneficial information for readers even though
its novelty is not high. As a general rule, the authors are requested to summarize a paper
within eight pages.

 Survey Paper: A summary of existing Research and Developments, organized under
some viewpoint, compared for the sake of positioning purpose, observed as the changes in
generations. Comprehensive references, overall perspective, objective evaluation, are
needed without advertising specific organizations. It is also appreciated that the status
and problems of the field, and the effect of them to the researchers and concerned people
are undersood by the author, and the resulant paper encourages the new entry into the
field, accelerates further development of related technologies, and prompts the
development in even other fields or brand new researches. As a general rule, the authors
are requested to summarize a paper within eight pages.

・ To submit the manuscript for ordinary paper, short paper, system development paper, or data
paper, at least one of the authors must be a member or a student member of the society.

・ We prohibit the duplicate submission of a paper. If a full paper, short paper, system
development paper, or data paper with the same content has been published or submitted to
other open publishing forums by the same author, or at least one of the co-authors, it shall
not be accepted as a rule. Open publishing forum implies internal or external books,
magazines, bulletins and newsletters from government offices, schools, company
organizations, etc. This regulation does not apply to a preliminary draft to be used at an

117



annual meeting, seminar, symposium, conference, and lecture meeting of our society or other 
societies (including overseas societies). A paper that was once approved as a short paper and 
being submitted again as the full paper after completion is not regarded as a duplicate 
submission. 

 
(2) Submission stage of a paper 
・ Delete all author information at the time of submission. However, deletion of reference 

information is the author’s discretion. 
・ At first, please register your name on the paper submission page of the following URL, and 

then log in again and fill in the necessary information. Use the “Style Format” to upload your 
manuscript. An applicant should use PDF format (converted from dvi of TeX or MS Word 
format) for the manuscript. As a rule, charts (figures and tables) shall be inserted into the 
manuscript to use the “Style Format”. (a different type of data file, such as audio and video, 
can be uploaded at the same time for reference.) 

http://www.editorialmanager.com/iieej/ 
・ If you have any questions regarding the submission, please consult the editor at our office. 

 
Contact: 
Person in charge of editing 
The Institute of Image Electronics Engineers of Japan 
3-35-4-101, Arakawa, Arakawa-Ku, Tokyo 116-0002, Japan 
E-mail: hensyu@iieej.org 
Tel: +81-3-5615-2893, Fax: +81-3-5615-2894 

 
2. Review of Papers and Procedures 

(1) Review of a paper 
・ A manuscript is reviewed by professional reviewers of the relevant field. The reviewer will 

deem the paper “acceptance”, “conditionally acceptance” or “returned”. The applicant is 
notified of the result of the review by E-mail. 

・ Evaluation method 
Ordinary papers are usually evaluated on the following criteria: 
 Novelty: The contents of the paper are novel. 
 Utility: The contents are useful for academic and industrial development. 
 Reliability: The contents are considered trustworthy by the reviewer. 
 Comprehensibility: The contents of the paper are clearly described and understood by 

the reviewer without misunderstanding. 
 

A short paper can be evaluated by having a quickness on the research content and evaluated 
to have new knowledge with results even if that is partial or for specific use, apart from the 
novelty and utility of an ordinary paper. 
 
A system development paper is evaluated based on the following criteria, apart from the 
novelty and utility of an ordinary paper. 
 Novelty of system development: Even when integrated with existing technologies, the 

novelty of the combination, novelty of the system, novelty of knowledge obtained from 
the developed system, etc. are recognized as the novelty of the system. 

 Utility of system development: It is comprehensively or partially superior compared to 
similar systems. Demonstrates a pioneering new application concept as a system. The 
combination has appropriate optimality for practical use. Demonstrates performance 
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limitations and examples of performance of the system when put to practical use. 
 

A data paper is considered novel if new deliverables of test, application and manufacturing, 
the introduction of new technology and proposals in the worksite have any priority, even 
though they are not necessarily original, apart from the novelty and utility of an ordinary 
paper. Also, if the new deliverables are superior compared to the existing technology and are 
useful for academic and industrial development, they should be evaluated. 
 
A survey paper is evaluated by comprehensiveness, overviewing point, and objectiveness 
apart from the novelty of an ordinary paper. Reliability, comprehensibility, completeness of 
reference papers are common to those in an ordinary paper. Utility is evaluated how the 
paper will enlighten the readers in the target fields. 

 
(2) Procedure after a review 
・ In case of acceptance, the author prepares a final manuscript (as mentioned in 3.). 
・ In the case of acceptance with comments by the reviewer, the author may revise the paper in 

consideration of the reviewer’s opinion and proceed to prepare the final manuscript (as 
mentioned in 3.). 

・ In case of conditional acceptance, the author shall modify a paper based on the reviewer’s 
requirements by a specified date (within 60 days), and submit the modified paper for 
approval. The corrected parts must be colored or underlined. A reply letter must be attached 
that carefully explains the corrections, assertions and future issues, etc., for all of the 
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